Page 35 - IJB-10-4
P. 35
International Journal of Bioprinting PAI for 3D bioprinted constructs
76. Liu C, Liang Y, Wang L. Single-shot photoacoustic microscopy of biomaterial scaffolds by volumetric photoacoustic
of hemoglobin concentration, oxygen saturation, and blood microscopy. Angew Chemie Int Ed. 2014;53(1):184-188.
flow in sub-microseconds. Photoacoustics. 2020;17:100156. doi: 10.1002/anie.201306282
doi: 10.1016/j.pacs.2019.100156
89. Cai X, Zhang Y, Li L, et al. Investigation of neovascularization
77. Pleitez MA, Khan AA, Soldà A, et al. Label-free metabolic in three-dimensional porous scaffolds in vivo by a
imaging by mid-infrared optoacoustic microscopy in living combination of multiscale photoacoustic microscopy and
cells. Nat Biotechnol. 2020;38(3):293-296. optical coherence tomography. Tissue Eng Part C Methods.
doi: 10.1038/s41587-019-0359-9 2013;19(3):196-204.
78. Shi J, Wong TT, He Y, et al. High-resolution, high-contrast doi: 10.1089/ten.tec.2012.0326
mid-infrared imaging of fresh biological samples with 90. Cai X, Paratala BS, Hu S, Sitharaman B, Wang LV. Multiscale
ultraviolet-localized photoacoustic microscopy. Nat photoacoustic microscopy of single-walled carbon
Photonics. 2019;13(9):609-615. nanotube-incorporated tissue engineering scaffolds. Tissue
doi: 10.1038/s41566-019-0441-3 Eng Part C Methods. 2012;18(4):310-317.
79. Park E, Lee Y-J, Kim C, Eom TJ. Azimuth mapping of doi: 10.1089/ten.tec.2011.0519
fibrous tissue in linear dichroism-sensitive photoacoustic 91. Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang
microscopy. Photoacoustics. 2023;31:100510. C. Photoacoustic carbon nanotubes embedded silk scaffolds
doi: 10.1016/j.pacs.2023.100510 for neural stimulation and regeneration. ACS Nano.
80. Zhao W, Yu H, Ge Z, et al. Characterization of 2022;16(2):2292-2305.
interconnectivity of gelatin methacrylate hydrogels using doi: 10.1021/acsnano.1c08491
photoacoustic imaging. Lab Chip. 2022;22(4):727-732. 92. Ogunlade O, Ho JO, Kalber TL, et al. Monitoring
doi: 10.1039/d1lc00967b neovascularization and integration of decellularized human
81. Ma C, Li W, Li D, et al. Photoacoustic imaging of 3D-printed scaffolds using photoacoustic imaging. Photoacoustics.
vascular networks. Biofabrication. 2022;14(2):025001. 2019;13:76-84.
doi: 10.1088/1758-5090/ac49d5 doi: 10.1016/j.pacs.2019.01.001
82. Yim W, Zhou J, Sasi L, et al. 3D‐bioprinted phantom with 93. Hwang SH, Kim J, Heo C, et al. 3D printed multi-growth
human skin phototypes for biomedical optics. Adv Mater. factor delivery patches fabricated using dual-crosslinked
2023;35(3):e2206385. decellularized extracellular matrix-based hybrid inks
doi: 10.1002/adma.202305227 to promote cerebral angiogenesis. Acta Biomater.
2023;157:137-148.
83. Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing
of hydrogel scaffolds for future application in photothermal doi: 10.1016/j.actbio.2022.11.050
therapy of breast cancer and tissue repair. Acta Biomater. 94. Li C, Ma Z, Li W, et al. 3D-printed scaffolds promote
2019;92:37-47. angiogenesis by recruiting antigen-specific T cells.
doi: 10.1016/j.actbio.2019.05.039 Engineering. 2022;17:183-195.
84. Zhu W, Zhou Z, Huang Y, et al. A versatile 3D-printable doi: 10.1016/j.eng.2021.05.018
hydrogel for antichondrosarcoma, antibacterial, and tissue 95. Tosoratti E, Fisch P, Taylor S, Laurent‐Applegate LA,
repair. J Mater Sci Technol. 2023;136:200-211. Zenobi‐Wong M. 3D‐printed reinforcement scaffolds
doi: 10.1016/j.jmst.2022.07.010 with targeted biodegradation properties for the tissue
85. Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel engineering of articular cartilage. Adv Healthc Mater.
fiber scaffolds with NIR-triggered drug release for localized 2021;10(23):e2101094.
therapy of breast cancer. Int J Pharm. 2020;580:119219. doi: 10.1002/adhm.202101094
doi: 10.1016/j.ijpharm.2020.119219 96. Hajireza P, Shi W, Bell K, Paproski RJ, Zemp RJ. Non-
86. Yang C, Gao X, Younis MR, et al. Non-invasive monitoring interferometric photoacoustic remote sensing microscopy.
of in vivo bone regeneration based on alkaline phosphatase- Light Sci Appl. 2017;6(6):e16278.
responsive scaffolds. Chem Eng J. 2021;408:127959. doi: 10.1038/lsa.2016.278
doi: 10.1016/j.cej.2020.127959 97. Sun W, Starly B, Daly AC, et al. The bioprinting roadmap.
87. Zhang Y, Cai X, Choi S-W, Kim C, Wang LV, Xia Y. Biofabrication. 2020;12(2):022002.
Chronic label-free volumetric photoacoustic microscopy doi: 10.1088/1758-5090/ab5158
of melanoma cells in three-dimensional porous scaffolds. 98. Gao G, Lee JH, Jang J, et al. Tissue engineered bio‐blood‐
Biomaterials. 2010;31(33):8651-8658. vessels constructed using a tissue‐specific bioink and 3D
doi: 10.1016/j.biomaterials.2010.07.089
coaxial cell printing technique: a novel therapy for ischemic
88. Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non‐ disease. Adv Funct Mater. 2017;27(33):1700798.
invasive and in situ characterization of the degradation doi: 10.1002/adfm.201770192
Volume 10 Issue 4 (2024) 27 doi: 10.36922/ijb.3448

