Page 35 - IJB-10-4
P. 35

International Journal of Bioprinting                                       PAI for 3D bioprinted constructs




            76.  Liu C, Liang Y, Wang L. Single-shot photoacoustic microscopy   of biomaterial scaffolds by volumetric photoacoustic
               of hemoglobin concentration, oxygen saturation, and blood   microscopy. Angew Chemie Int Ed. 2014;53(1):184-188.
               flow in sub-microseconds. Photoacoustics. 2020;17:100156.     doi: 10.1002/anie.201306282
               doi: 10.1016/j.pacs.2019.100156
                                                               89.  Cai X, Zhang Y, Li L, et al. Investigation of neovascularization
            77.  Pleitez MA, Khan AA, Soldà A, et al. Label-free metabolic   in three-dimensional porous scaffolds  in vivo by a
               imaging by mid-infrared optoacoustic microscopy in living   combination of multiscale photoacoustic microscopy and
               cells. Nat Biotechnol. 2020;38(3):293-296.         optical coherence tomography. Tissue Eng Part C Methods.
               doi: 10.1038/s41587-019-0359-9                     2013;19(3):196-204.
            78.  Shi J, Wong TT, He Y, et al. High-resolution, high-contrast      doi: 10.1089/ten.tec.2012.0326
               mid-infrared imaging of fresh biological samples with   90.  Cai X, Paratala BS, Hu S, Sitharaman B, Wang LV. Multiscale
               ultraviolet-localized  photoacoustic  microscopy.  Nat   photoacoustic microscopy of single-walled carbon
               Photonics. 2019;13(9):609-615.                     nanotube-incorporated tissue engineering scaffolds. Tissue
               doi: 10.1038/s41566-019-0441-3                     Eng Part C Methods. 2012;18(4):310-317.
            79.  Park E, Lee Y-J, Kim C, Eom TJ. Azimuth mapping of      doi: 10.1089/ten.tec.2011.0519
               fibrous tissue in linear dichroism-sensitive photoacoustic   91.  Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang
               microscopy. Photoacoustics. 2023;31:100510.        C. Photoacoustic carbon nanotubes embedded silk scaffolds
               doi: 10.1016/j.pacs.2023.100510                    for neural stimulation and regeneration.  ACS Nano.
            80.  Zhao W, Yu H, Ge Z, et al. Characterization of   2022;16(2):2292-2305.
               interconnectivity of gelatin methacrylate hydrogels using      doi: 10.1021/acsnano.1c08491
               photoacoustic imaging. Lab Chip. 2022;22(4):727-732.  92.  Ogunlade O, Ho JO, Kalber TL, et al. Monitoring
               doi: 10.1039/d1lc00967b                            neovascularization and integration of decellularized human
            81.  Ma C, Li W, Li D, et al. Photoacoustic imaging of 3D-printed   scaffolds using photoacoustic imaging.  Photoacoustics.
               vascular networks. Biofabrication. 2022;14(2):025001.  2019;13:76-84.
               doi: 10.1088/1758-5090/ac49d5                      doi: 10.1016/j.pacs.2019.01.001
            82.  Yim W, Zhou J, Sasi L, et al. 3D‐bioprinted phantom with   93.  Hwang SH, Kim J, Heo C, et al. 3D printed multi-growth
               human skin phototypes for biomedical optics. Adv Mater.   factor delivery patches fabricated using dual-crosslinked
               2023;35(3):e2206385.                               decellularized extracellular matrix-based hybrid inks
               doi: 10.1002/adma.202305227                        to promote cerebral angiogenesis.  Acta Biomater.
                                                                  2023;157:137-148.
            83.  Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing
               of hydrogel scaffolds for future application in photothermal      doi: 10.1016/j.actbio.2022.11.050
               therapy of breast cancer and tissue repair.  Acta Biomater.   94.  Li C, Ma Z, Li W, et al. 3D-printed scaffolds promote
               2019;92:37-47.                                     angiogenesis by recruiting antigen-specific T cells.
               doi: 10.1016/j.actbio.2019.05.039                  Engineering. 2022;17:183-195.
            84.  Zhu W, Zhou Z, Huang Y, et al. A versatile 3D-printable      doi: 10.1016/j.eng.2021.05.018
               hydrogel for antichondrosarcoma, antibacterial, and tissue   95.  Tosoratti E, Fisch P, Taylor S, Laurent‐Applegate LA,
               repair. J Mater Sci Technol. 2023;136:200-211.     Zenobi‐Wong  M.  3D‐printed  reinforcement scaffolds
               doi: 10.1016/j.jmst.2022.07.010                    with targeted biodegradation properties for the tissue
            85.  Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel   engineering of articular cartilage.  Adv Healthc Mater.
               fiber scaffolds with NIR-triggered drug release for localized   2021;10(23):e2101094.
               therapy of breast cancer. Int J Pharm. 2020;580:119219.     doi: 10.1002/adhm.202101094
               doi: 10.1016/j.ijpharm.2020.119219              96.  Hajireza P, Shi W, Bell K, Paproski RJ, Zemp RJ. Non-
            86.  Yang C, Gao X, Younis MR, et al. Non-invasive monitoring   interferometric photoacoustic remote sensing microscopy.
               of in vivo bone regeneration based on alkaline phosphatase-  Light Sci Appl. 2017;6(6):e16278.
               responsive scaffolds. Chem Eng J. 2021;408:127959.     doi: 10.1038/lsa.2016.278
               doi: 10.1016/j.cej.2020.127959                  97.  Sun W, Starly B, Daly AC, et al. The bioprinting roadmap.
            87.  Zhang  Y,  Cai  X,  Choi  S-W,  Kim  C,  Wang  LV,  Xia  Y.   Biofabrication. 2020;12(2):022002.
               Chronic label-free volumetric photoacoustic microscopy      doi: 10.1088/1758-5090/ab5158
               of melanoma cells in three-dimensional porous scaffolds.   98.  Gao G, Lee JH, Jang J, et al. Tissue engineered bio‐blood‐
               Biomaterials. 2010;31(33):8651-8658.               vessels constructed using a tissue‐specific bioink and 3D
               doi: 10.1016/j.biomaterials.2010.07.089
                                                                  coaxial cell printing technique: a novel therapy for ischemic
            88.  Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non‐  disease. Adv Funct Mater. 2017;27(33):1700798.
               invasive and in situ characterization of the degradation      doi: 10.1002/adfm.201770192


            Volume 10 Issue 4 (2024)                        27                                doi: 10.36922/ijb.3448
   30   31   32   33   34   35   36   37   38   39   40