Page 14 - IJB-5-1
P. 14
Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective
autologous cartilage tissue for nasal reconstruction after Mater, 6: 1601101. https://doi.org/10.1002/adhm.201601101.
tumour resection: An observational first–in–human trial. 31. Zhang Y S, Arneri A, Bersini S, et al., 2016, Bioprinting
Lancet, 384: 337–346. https://doi.org/10.1016/S0140- 3D microfibrous scaffolds for engineering endothelialized
6736(14)60544-4. myocardium and heart–on–a–chip. Biomaterials, 110: 45–59.
19. Muhart M, McFalls S, Kirsner R, et al., 1997, Bioengineered https://doi.org/10.1016/j.biomaterials.2016.09.003.
skin. Lancet, 350: 1142. https://doi.org/10.1016/S0140- 32. Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned
6736(05)63788-9. biomimetic human iPSC–derived hepatic model via rapid 3D
20. Olausson M, Patil P B, Kuna V K, et al., 2012, Transplantation bioprinting. Proc Nat Acad Sci, 113: 2206–2211. https://doi.
of an allogeneic vein bioengineered with autologous stem org/10.1073/pnas.1524510113.
cells: A proof–of–concept study. Lancet, 380: 230–237. 33. Seol Y J, Park J Y, Jeong W, et al., 2015, Development of
https://doi.org/10.1016/S0140-6736(12)60633-3. hybrid scaffolds using ceramic and hydrogel for articular
21. Mironov V, Trusk T, Kasyanov V, et al., 2009, Biofabrication: cartilage tissue regeneration. J Biomed Mater Res Part A,
A 21 century manufacturing paradigm. Biofabrication, 1(2): 103: 1404–1413. https://doi.org/10.1002/jbm.a.35276.
st
22001. https://doi.org/10.1088/1758-5082/1/2/022001. 34. Lee J S, Kim B S, Seo D, et al., 2017, Three–dimensional
22. Guillemot F, Mironov V, Nakamura M., 2010, Bioprinting cell printing of large–volume tissues: Application to ear
is coming of age: Report from the International regeneration. Tissue Eng Part C, 23: 136–145. https://doi.
conference on bioprinting and biofabrication in Bordeaux org/10.1089/ten.tec.2016.0362.
(3B’09). Biofabrication, 2: 10201–10207. https://doi. 35. Liu L, Wang X., 2015, Creation of a vascular system for
org/10.1088/1758-5082/2/1/010201. complex organ manufacturing. Int J Bioprint, 1: 77–86.
23. Groll J, Boland T, Blunk T, et al., 2016, Biofabrication: 36. Lokmic Z, Mitchell G M, 2008, Engineering the
Reappraising the definition of an evolving field. microcirculation. Tissue Eng Part B, 14(1): 87–103. https://
Biofabrication, 8(1): 13001. https://doi.org/10.1088/1758- doi.org/10.1089/teb.2007.0299.
5090/aaec52. 37. Liu F, Liu C, Chen Q H, et al., 2018, Progress in organ 3D
24. Pati F, Ha D H, Jang J, et al., 2015, Biomimetic 3D tissue printing bioprinting. Int J Bioprint, 4(1): 128. https://doi.org/10.18063/
for soft tissue regeneration. Biomaterials, 62: 164–175. ijb.v4i1.128.
https://doi.org/10.1016/j.biomaterials.2015.05.043. 38. Khademhosseini A, Langer R, Borenstein J, et al., 2006,
25. Lind JU, Busbee T A, Valentine A D, et al., 2017, Instrumented Microscale technologies for tissue engineering and biology.
cardiac microphysiological devices via multimaterial three– Proc Nat Acad Sci, 103: 2480–2487. https://doi.org/10.1073/
dimensional printing. Nat Mater, 16(3): 303–308. https://doi. pnas.0507681102.
org/10.1038/nmat4782. 39. Zhuang P, Sun A X, An J, et al., 2018, 3D neural tissue models:
26. NIH National Center of Advancing Translational Sciences, From spheroids to bioprinting. Biomaterials, 154: 113–133.
Meet Chip. Available from: https://www.ncats.nih.gov/ https://doi.org/10.1016/j.biomaterials.2017.10.002.
tissuechip/chip. 40. Arai K, Yoshida T, Okabe M, et al., 2017, Fabrication of 3D
27. Zimmermann W H, Melnychenko I, Wasmeier G, et al., 2006, culture platform with sandwich architecture for preserving
Engineered heart tissue grafts improve systolic and diastolic liver–specific functions of hepatocytes using 3D bioprinter.
function in infarcted rat hearts. Nat Med, 12: 452–458. https:// J Biomed Mater Res Part A, 105(6): 1583–1592. https://doi.
doi.org/10.1038/nm1394. org/10.1002/jbm.a.35905.
28. Yanez M, Rincon J, Dones A, et al., 2014, In vivo assessment 41. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D Bioprinting
of printed microvasculature in a bilayer skin graft to treat of heterogeneous aortic valve conduits with alginate/gelatin
full–thickness wounds. Tissue Eng Part A, 21: 224–233. hydrogels. J Biomed Mater Res Part A, 101(5): 1255–1264.
https://doi.org/10.1089/ten.tea.2013.0561. https://doi.org/10.1002/jbm.a.34420.
29. Homan K A, Kolesky D B, Skylar–Scott M A, et al., 2016, 42. O’Brien C M, Holmes B, Faucett S, et al., 2015, Three–
Bioprinting of 3D convoluted renal proximal tubules on dimensional printing of nanomaterial scaffolds for complex
perfusable chips. Sci Rep, 6: 34845. https://doi.org/10.1038/ tissue regeneration. Tissue Eng Part B, 21: 103. https://doi.
srep34845. org/10.1089/ten.teb.2014.0168.
30. Pourchet L J, Thepot A, Albouy M, et al., 2017, Human skin 43. Pati F, Jang J, Ha D H, et al., 2014, Printing three–dimensional
3D bioprinting using scaffold–free approach. Adv Healthc tissue analogues with decellularized extracellular matrix
8 International Journal of Bioprinting (2019)–Volume 5, Issue 1

