Page 14 - IJB-5-1
P. 14

Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective
               autologous  cartilage  tissue  for nasal  reconstruction  after   Mater, 6: 1601101. https://doi.org/10.1002/adhm.201601101.
               tumour  resection:  An  observational  first–in–human  trial.   31.  Zhang Y  S, Arneri A, Bersini  S,  et  al.,  2016,  Bioprinting
               Lancet,  384:  337–346.  https://doi.org/10.1016/S0140-  3D  microfibrous  scaffolds  for  engineering  endothelialized
               6736(14)60544-4.                                    myocardium and heart–on–a–chip. Biomaterials, 110: 45–59.
           19.  Muhart M, McFalls S, Kirsner R, et al., 1997, Bioengineered   https://doi.org/10.1016/j.biomaterials.2016.09.003.
               skin.  Lancet, 350: 1142. https://doi.org/10.1016/S0140-  32.  Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned
               6736(05)63788-9.                                    biomimetic human iPSC–derived hepatic model via rapid 3D
           20.  Olausson M, Patil P B, Kuna V K, et al., 2012, Transplantation   bioprinting. Proc Nat Acad Sci, 113: 2206–2211. https://doi.
               of an allogeneic  vein bioengineered  with autologous stem   org/10.1073/pnas.1524510113.
               cells:  A proof–of–concept  study. Lancet,  380: 230–237.   33.  Seol Y J, Park J Y, Jeong W, et al., 2015, Development of
               https://doi.org/10.1016/S0140-6736(12)60633-3.      hybrid  scaffolds using ceramic  and  hydrogel  for articular
           21.  Mironov V, Trusk T, Kasyanov V, et al., 2009, Biofabrication:   cartilage  tissue regeneration.  J Biomed Mater Res Part A,
               A 21  century manufacturing paradigm. Biofabrication, 1(2):   103: 1404–1413. https://doi.org/10.1002/jbm.a.35276.
                  st
               22001. https://doi.org/10.1088/1758-5082/1/2/022001.  34.  Lee J S, Kim B S, Seo D, et al., 2017, Three–dimensional
           22.  Guillemot  F,  Mironov V,  Nakamura  M.,  2010,  Bioprinting   cell  printing  of large–volume  tissues:  Application  to  ear
               is coming of age: Report from the International     regeneration.  Tissue Eng  Part C, 23: 136–145. https://doi.
               conference  on  bioprinting  and  biofabrication  in  Bordeaux   org/10.1089/ten.tec.2016.0362.
               (3B’09).   Biofabrication,  2:  10201–10207.  https://doi.  35.  Liu L,  Wang X.,  2015, Creation of a vascular system for
               org/10.1088/1758-5082/2/1/010201.                   complex organ manufacturing. Int J Bioprint, 1: 77–86.
           23.  Groll  J, Boland  T,  Blunk  T,  et  al.,  2016,  Biofabrication:   36.  Lokmic  Z,  Mitchell  G M,  2008,  Engineering  the
               Reappraising  the  definition  of  an  evolving  field.   microcirculation. Tissue Eng Part B, 14(1): 87–103. https://
               Biofabrication, 8(1): 13001. https://doi.org/10.1088/1758-  doi.org/10.1089/teb.2007.0299.
               5090/aaec52.                                    37.  Liu F, Liu C, Chen Q H, et al., 2018, Progress in organ 3D
           24.  Pati F, Ha D H, Jang J, et al., 2015, Biomimetic 3D tissue printing   bioprinting. Int J Bioprint, 4(1): 128. https://doi.org/10.18063/
               for soft tissue regeneration.  Biomaterials,  62: 164–175.   ijb.v4i1.128.
               https://doi.org/10.1016/j.biomaterials.2015.05.043.  38.  Khademhosseini  A, Langer R, Borenstein J,  et al., 2006,
           25.  Lind JU, Busbee T A, Valentine A D, et al., 2017, Instrumented   Microscale technologies for tissue engineering and biology.
               cardiac microphysiological devices via multimaterial three–  Proc Nat Acad Sci, 103: 2480–2487. https://doi.org/10.1073/
               dimensional printing. Nat Mater, 16(3): 303–308. https://doi.  pnas.0507681102.
               org/10.1038/nmat4782.                           39.  Zhuang P, Sun A X, An J, et al., 2018, 3D neural tissue models:
           26.  NIH National Center of Advancing Translational Sciences,   From spheroids to bioprinting. Biomaterials, 154: 113–133.
               Meet Chip.  Available  from: https://www.ncats.nih.gov/  https://doi.org/10.1016/j.biomaterials.2017.10.002.
               tissuechip/chip.                                40.  Arai K, Yoshida T, Okabe M, et al., 2017, Fabrication of 3D
           27.  Zimmermann W H, Melnychenko I, Wasmeier G, et al., 2006,   culture  platform with sandwich architecture  for preserving
               Engineered heart tissue grafts improve systolic and diastolic   liver–specific functions of hepatocytes using 3D bioprinter.
               function in infarcted rat hearts. Nat Med, 12: 452–458. https://  J Biomed Mater Res Part A, 105(6): 1583–1592. https://doi.
               doi.org/10.1038/nm1394.                             org/10.1002/jbm.a.35905.
           28.  Yanez M, Rincon J, Dones A, et al., 2014, In vivo assessment   41.  Duan B, Hockaday L A, Kang K H, et al., 2013, 3D Bioprinting
               of printed  microvasculature  in a bilayer  skin graft to treat   of heterogeneous aortic valve conduits with alginate/gelatin
               full–thickness  wounds.  Tissue Eng Part A,  21: 224–233.   hydrogels. J Biomed Mater Res Part A, 101(5): 1255–1264.
               https://doi.org/10.1089/ten.tea.2013.0561.          https://doi.org/10.1002/jbm.a.34420.
           29.  Homan K A, Kolesky D B, Skylar–Scott M A, et al., 2016,   42.  O’Brien  C  M,  Holmes  B,  Faucett  S, et  al.,  2015, Three–
               Bioprinting  of 3D convoluted  renal proximal  tubules on   dimensional printing of nanomaterial scaffolds for complex
               perfusable chips. Sci Rep, 6: 34845. https://doi.org/10.1038/  tissue regeneration. Tissue Eng Part B, 21: 103. https://doi.
               srep34845.                                          org/10.1089/ten.teb.2014.0168.
           30.  Pourchet L J, Thepot A, Albouy M, et al., 2017, Human skin   43.  Pati F, Jang J, Ha D H, et al., 2014, Printing three–dimensional
               3D bioprinting  using scaffold–free approach.  Adv Healthc   tissue  analogues  with  decellularized  extracellular  matrix

           8                           International Journal of Bioprinting (2019)–Volume 5, Issue 1
   9   10   11   12   13   14   15   16   17   18   19