Page 15 - IJB-5-1
P. 15
Mir TA, et al.
bioink. Nat Comm, 5: 3935. https://doi.org/10.1038/ of the suitability of hydrogel forming polymers for extrusion–
ncomms4935. based 3D–printing. J Mater Chem B, 3: 4105–4117. https://
44. Murphy S V, Atala A., 2014, 3D bioprinting of tissues and doi.org/10.1039/C5TB00393H.
organs. Nat Biotechnol, 32: 773–785. https://doi.org/10.1038/ 57. Ouyang L, Yao R, Zhao Y, et al., 2016. Effect of bioink
nbt.2958. properties on printability and cell viability for 3D bioplotting
45. Nakamura M, Mir T A, Arai K, et al., 2015, Bioprinting with of embryonic stem cells. Biofabrication, 8: 35020. https://
pre–cultured cellular constructs to–wards tissue engineering doi.org/10.1088/1758-5090/8/3/035020.
of hierarchical tissues. Int J Bioprint, 1(1): 39–48. 58. Kolesky D B, Truby RL, Gladman A S, et al., 2014,
46. Pradhan S, Hassani I, Clary J M, et al., 2016, Polymeric Bioprinting: 3D bioprinting of vascularized, heterogeneous
biomaterials for in vitro cancer tissue engineering and drug cell–laden tissue constructs. Adv Mater, 26(19): 3124–3130.
testing applications. Tissue Eng Part B, 22: 470–484. https:// https://doi.org/10.1002/adma.201470124.
doi.org/10.1089/ten.teb.2015.0567. 59. Yu J T, Xipeng T, Wai Y Y, et al., 2016, Hybrid microscaffold–
47. Arai K, Tsukamoto Y, Yoshida H, et al., 2016, The development based 3D bioprinting of multi–cellular constructs with high
of cell adhesive hydrogel for 3D printing. Int J Bioprint, 2(2): compressive strength: A new biofabrication strategy. Sci Rep,
153–162. https://doi.org/10.18063/IJB.2016.02.002. 6: 39140. https://doi.org/10.1038/srep39140.
48. Lee V K, Kim D Y, Ngo H, et al., 2014, Creating perfused 60. Pescosolido L, Vermonden T, Malda J, et al., 2011, In situ
functional vascular channels using 3D bio–printing forming IPN hydrogels of calcium alginate and dextran–
technology. Biomaterials, 35: 8092–8102. https://doi. HEMA for biomedical applications. Acta Biomateria,
org/10.1016/j.biomaterials.2014.05.083. 7: 1627–1633. https://doi.org/10.1016/j.actbio.2010.11.040.
49. Kuo K C, Lin R Z, Tien H W, et al., 2015, Bioengineering 61. Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a
vascularized tissue constructs using an injectable cell–laden mechanically enhanced three–dimensional dual cell–laden
enzymatically cross linked collagen hydrogel derived from construct for osteochondral tissue engineering using a multi–
dermal extracellular matrix. Acta Biomater, 27: 151–166. head tissue/organ building system. J Micromech Microeng,
https://doi.org/10.1016/j.actbio.2015.09.002. 22: 85014. https://doi.org/10.1088/0960-1317/22/8/085014.
50. Xian X, Mary C F, Xinqiao J., 2014, Three–dimensional 62. Ng W L, Yeong W Y, Naing M W., 2016, Polyelectrolyte
in vitro tumor models for cancer research and drug evaluation. gelatin–chitosan hydrogel optimized for 3D bioprinting in
Biotechnol Adv, 32: 1256–1268. https://doi.org/10.1016/j. skin tissue engineering. Int J Bioprint, 2(1): 53–62. https://
biotechadv.2014.07.009. doi.org/10.18063/IJB.2016.01.009.
51. Sundaramurthi D, Rauf S, Hauser C, 2016, 3D bioprinting 63. Yan Y, Wang X, Pan Y, et al., 2005, Fabrication of viable
technology for regenerative medicine applications. tissue–engineered constructs with 3D cell–assembly
Int J Bioprint, 2(2): 9–26. https://doi.org/10.18063/ technique. Biomaterials, 26(29): 5864–5871. https://doi.
IJB.2016.02.010. org/10.1016/j.biomaterials.2005.02.027.
52. Sears N A, Seshadri D R, Dhavalikar P S, et al., 2016, A 64. Yan Y, Wang X, Xiong Z, et al., 2005, Direct construction
review of three–dimensional printing in tissue engineering. of a three–dimensional structure with cells and hydrogel.
Tissue Eng Part B, 22: 298–310. https://doi.org/10.1089/ten. J Bioact Compat Polym, 20(3): 259–269. https://doi.
teb.2015.0464. org/10.1177/0883911505053658.
53. Wang X, Yan Y, Zhang R., 2010, Recent trends and challenges 65. Wang X, Yan Y, Pan Y, et al., 2006, Generation of three
in complex organ manufacturing. Tissue Eng Part B, dimensional hepatocyte/gelatin structures with rapid
16: 189–197. https://doi.org/10.1089/ten.teb.2009.0576. prototyping system. Tissue Eng, 12(1): 83–90. https://doi.
54. Wang S, Lee J M, Yeong W Y., 2015. Smart hydrogels for 3D org/10.1089/ten.2006.12.83.
bioprinting. Int J Bioprint, 1: 3–14. https://doi.org/10.18063/ 66. Zhang T, Yan Y, Wang X, et al., 2007, Three–dimensional
IJB.2015.01.005. gelatin and gelatin/hyaluronan hydrogel structures for
55. Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting traumatic brain injury. J Bioact Compat Polym, 22(1): 19–29.
system to produce human–scale tissue constructs with https://doi.org/10.1177/0883911506074025.
structural integrity. Nat Biotechnol, 34: 312–319. https://doi. 67. Zhao X, Wang X, 2013, Preparation of an adipose–derived
org/10.1038/nbt.3413. stem cell (ADSC)/fibrin–PLGA construct based on a rapid
56. Kirchmajer D M, Gorkin I R, Panhuis M., 2015. An overview prototyping technique. J Bioact Compat Polym, 28(3):
International Journal of Bioprinting (2019)–Volume 5, Issue 1 9

