Page 15 - IJB-5-1
P. 15

Mir TA, et al.
               bioink. Nat Comm, 5: 3935. https://doi.org/10.1038/  of the suitability of hydrogel forming polymers for extrusion–
               ncomms4935.                                         based 3D–printing. J Mater Chem B, 3: 4105–4117. https://
           44.  Murphy S V, Atala A., 2014, 3D bioprinting of tissues and   doi.org/10.1039/C5TB00393H.
               organs. Nat Biotechnol, 32: 773–785. https://doi.org/10.1038/  57.  Ouyang L,  Yao R, Zhao  Y,  et al., 2016. Effect  of bioink
               nbt.2958.                                           properties on printability and cell viability for 3D bioplotting
           45.  Nakamura M, Mir T A, Arai K, et al., 2015, Bioprinting with   of embryonic  stem  cells.  Biofabrication, 8: 35020. https://
               pre–cultured cellular constructs to–wards tissue engineering   doi.org/10.1088/1758-5090/8/3/035020.
               of hierarchical tissues. Int J Bioprint, 1(1): 39–48.  58.  Kolesky D B,  Truby RL, Gladman  A S,  et  al., 2014,
           46.  Pradhan S, Hassani I, Clary  J M,  et al., 2016, Polymeric   Bioprinting: 3D bioprinting of vascularized, heterogeneous
               biomaterials for in vitro cancer tissue engineering and drug   cell–laden tissue constructs. Adv Mater, 26(19): 3124–3130.
               testing applications. Tissue Eng Part B, 22: 470–484. https://  https://doi.org/10.1002/adma.201470124.
               doi.org/10.1089/ten.teb.2015.0567.              59.  Yu J T, Xipeng T, Wai Y Y, et al., 2016, Hybrid microscaffold–
           47.  Arai K, Tsukamoto Y, Yoshida H, et al., 2016, The development   based 3D bioprinting of multi–cellular constructs with high
               of cell adhesive hydrogel for 3D printing. Int J Bioprint, 2(2):   compressive strength: A new biofabrication strategy. Sci Rep,
               153–162. https://doi.org/10.18063/IJB.2016.02.002.  6: 39140. https://doi.org/10.1038/srep39140.
           48.  Lee V K, Kim D Y, Ngo H, et al., 2014, Creating perfused   60.  Pescosolido L, Vermonden T, Malda J, et al., 2011, In situ
               functional  vascular  channels  using 3D bio–printing   forming  IPN hydrogels  of calcium alginate  and  dextran–
               technology.   Biomaterials,  35:  8092–8102.  https://doi.  HEMA for biomedical  applications.  Acta  Biomateria,
               org/10.1016/j.biomaterials.2014.05.083.             7: 1627–1633. https://doi.org/10.1016/j.actbio.2010.11.040.
           49.  Kuo K C, Lin R Z, Tien H W, et al., 2015, Bioengineering   61.  Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a
               vascularized tissue constructs using an injectable cell–laden   mechanically  enhanced three–dimensional dual cell–laden
               enzymatically cross linked collagen hydrogel derived from   construct for osteochondral tissue engineering using a multi–
               dermal  extracellular  matrix.  Acta Biomater,  27: 151–166.   head tissue/organ building system.  J Micromech Microeng,
               https://doi.org/10.1016/j.actbio.2015.09.002.       22: 85014. https://doi.org/10.1088/0960-1317/22/8/085014.
           50.  Xian  X,  Mary  C  F,  Xinqiao  J.,  2014,  Three–dimensional   62.  Ng  W L, Yeong  W Y, Naing M  W., 2016, Polyelectrolyte
               in vitro tumor models for cancer research and drug evaluation.   gelatin–chitosan  hydrogel optimized  for 3D bioprinting  in
               Biotechnol  Adv, 32: 1256–1268. https://doi.org/10.1016/j.  skin tissue engineering. Int J Bioprint, 2(1): 53–62. https://
               biotechadv.2014.07.009.                             doi.org/10.18063/IJB.2016.01.009.
           51.  Sundaramurthi D, Rauf S, Hauser C, 2016, 3D bioprinting   63.  Yan Y, Wang X, Pan Y, et al., 2005, Fabrication of viable
               technology  for  regenerative  medicine  applications.  tissue–engineered  constructs with 3D cell–assembly
               Int J Bioprint, 2(2): 9–26. https://doi.org/10.18063/  technique.  Biomaterials, 26(29): 5864–5871. https://doi.
               IJB.2016.02.010.                                    org/10.1016/j.biomaterials.2005.02.027.
           52.  Sears N A,  Seshadri D  R, Dhavalikar P S,  et al.,  2016, A   64.  Yan Y, Wang X, Xiong Z, et al., 2005, Direct construction
               review of three–dimensional printing in tissue engineering.   of a three–dimensional  structure  with cells  and hydrogel.
               Tissue Eng Part B, 22: 298–310. https://doi.org/10.1089/ten.  J Bioact  Compat Polym, 20(3): 259–269. https://doi.
               teb.2015.0464.                                      org/10.1177/0883911505053658.
           53.  Wang X, Yan Y, Zhang R., 2010, Recent trends and challenges   65.  Wang  X, Yan  Y,  Pan  Y,  et  al., 2006, Generation  of three
               in  complex  organ  manufacturing.  Tissue  Eng  Part B,   dimensional  hepatocyte/gelatin  structures  with  rapid
               16: 189–197. https://doi.org/10.1089/ten.teb.2009.0576.  prototyping system.  Tissue Eng, 12(1): 83–90. https://doi.
           54.  Wang S, Lee J M, Yeong W Y., 2015. Smart hydrogels for 3D   org/10.1089/ten.2006.12.83.
               bioprinting. Int J Bioprint, 1: 3–14. https://doi.org/10.18063/  66.  Zhang T, Yan Y, Wang X, et al., 2007, Three–dimensional
               IJB.2015.01.005.                                    gelatin  and gelatin/hyaluronan  hydrogel structures for
           55.  Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting   traumatic brain injury. J Bioact Compat Polym, 22(1): 19–29.
               system  to  produce  human–scale  tissue  constructs  with   https://doi.org/10.1177/0883911506074025.
               structural integrity. Nat Biotechnol, 34: 312–319. https://doi.  67.  Zhao X, Wang X, 2013, Preparation of an adipose–derived
               org/10.1038/nbt.3413.                               stem cell (ADSC)/fibrin–PLGA construct based on a rapid
           56.  Kirchmajer D M, Gorkin I R, Panhuis M., 2015. An overview   prototyping  technique.  J Bioact  Compat  Polym,  28(3):

                                       International Journal of Bioprinting (2019)–Volume 5, Issue 1         9
   10   11   12   13   14   15   16   17   18   19   20