Page 17 - IJB-5-1
P. 17
Mir TA, et al.
stem cell fate. Nat Mater, 13: 558. https://doi.org/10.1038/ 104. Lambrechts T, Papantoniou I, Sonnaert M, et al., 2014,
nmat3980. Model–based cell number quantification using online
94. Guyot Y, Papantoniou I, Chai YC, et al., 2014, A computational single oxygen sensor data for tissue engineering perfusion
model for cell/ECM growth on 3D surfaces using the level bioreactors. Biotechnol Bioeng, 111: 1982–1992. https://doi.
set method: a bone tissue engineering case study. Biomech org/10.1002/bit.25274.
Model Mechanobiol, 13:1361–1371. https://doi.org/10.1007/ 105. Hebels D, Carlier A, Coonen M, et al., 2017, cBiT:
s10237-014-0577-5. A transcriptomics database for innovative biomaterial
95. Papantoniou I, Sonnaert M, Geris L, et al., 2014, Three– engineering. Biomaterials, 149: 88–97. https://doi.org/10.1016/j.
dimensional characterization of tissue engineered constructs siny.2013.04.008.
by contrast–enhanced nanofocus computed tomography. 106. Gittenberger–de G A, Bartelings M M, Poelmann R E,
Tissue Eng Part C Methods, 20: 177–187. https://doi. et al., 2013, Embryology of the heart and its impact on
org/10.1089/ten.tec.2013.0041. understanding fetal and neonatal heart disease. Semin Fetal
96. Guyot Y, Luyten F P, Schrooten J, et al., 2015, A three– Neonatal Med, 18(5): 237–244.
dimensional computational fluid dynamics model of shear 107. Baldwin D E., 2018, Heart development. Encyclopedia
stress distribution during neotissue growth in a perfusion Cardiovasc Res Med, 2018: 380–398.
bioreactor. Biotechnol Bioeng, 112: 2591–2600. https://doi. 108. Kloesel B, DiNardo J A, Body S C.,2016, Cardiac embryology
org/10.1002/bit.25672. and molecular mechanisms of congenital heart disease – A
97. Maes F, Claessens T, Moesen M, et al., 2012, Computational primer for anesthesiologists. Anesth Analg, 123(3): 551–569.
models for wall shear stress estimation in scaffolds: https://doi.org/10.1213/ANE.0000000000001451.
A comparative study of two complete geometries. 109. Heart Embryology Video. Available from: https://www.
J Biomech, 45: 1586–1592. https://doi.org/10.1016/j. youtube.com/watch?v=5DIUk9IXUaI
jbiomech.2012.04.015. 110. Michał S, Monika P A, Alina W, et al., 2015, Three–
98. Lesman A, Blinder Y, Levenberg S., 2010, Modeling of dimensional growth dynamics of the liver in the human fetus.
flow–induced shear stress applied on 3D cellular scaffolds: Surg Radiol Anat, 37(5): 439–448. https://doi.org/10.1007/
Implications for vascular tissue engineering. Biotechnol s00276-015-1437-4.
Bioeng, 105: 645–654. https://doi.org/10.1002/bit.22555. 111. Barrya J S, Anthony R V., 2008, The pregnant sheep as a
99. Shakhawath H, Bergstrosm D J, Chen X B., 2015, Modelling model for human pregnancy. Theriogenology, 69(1): 55–67.
and simulation of the chondrocyte cell growth, glucose https://doi.org/10.1016/j.theriogenology.2007.09.021.
consumption and lactate production within a porous tissue 112. Toshihiro K, Akiteru M, Toshihiko S, et al., 2017,
scaffold inside a perfusion bioreactor. Biotechnol Rep, Development and growth of organs in living whole embryo
5: 55–62. https://doi.org/10.1016/j.btre.2014.12.002. and larval grafts in zebrafish. Sci Rep, 7: 16508. https://doi.
100. Guyot Y, Papantoniou I, Luyten F P, et al., 2016, Coupling org/10.1038/s41598-017-16642-5.
curvature dependent and shear stress–stimulated neotissue 113. Gideon H, Julian N, Oded M, et al., 2015, Venous–derived
growth in dynamic bioreactor cultures: A 3D computational angioblasts generate organ–specific vessels during zebrafish
model of a complete scaffold. Biomech Model Mechanobiol, embryonic development. Development, 142: 4266–4278.
15: 169–180. https://doi.org/10.1007/s10237-015-0753-2. https://doi.org/10.1242/dev.129247.
101. Kadlec P, Gabrys B, Strandt S., 2009, Data–driven soft sensors 114. Wenyao Z, Xue Z L, Tong X, et al., 2016, Inflammatory
in the process industry. Comput Chem Eng, 33: 795–814. responses of stromal fibroblasts to inflammatory epithelial
https://doi.org/10.1016/j.compchemeng.2008.12.012. cells are involved in the pathogenesis of bovine mastitis.
102. de Assis A J, Filho R M., 2000, Soft sensors development Exp Cell Res, 349(1): 45–52. https://doi.org/10.1016/j.
for on–line bioreactor state estimation. Comput Chem Eng, yexcr.2016.09.016.
24: 1099–1103. https://doi.org/10.1016/S0098-1354(00)00489-0. 115. Sophie V L, Kapka M, Carsten T., 2014, Crosstalk between
103. Viazzi S, Lambrechts T, Papantoniou I, 2015, Real–time fibroblasts and inflammatory cells. Cardiovasc Res, 102(2):
characterization of harvesting process for adherent cell culture 258–269. https://doi.org/10.1093/cvr/cvu062.
based on on–line imaging and model–based monitoring. 116. Justin H, Douglas L., 2016, Role of inflammatory cells
Biosyst Eng, 138: 104–113. https://doi.org/10.1016/j. in fibroblast activation. J Mol Cell Cardiol, 93: 143–148.
biosystemseng.2015.06.006. https://doi.org/10.1016/j.yjmcc.2015.11.016.
International Journal of Bioprinting (2019)–Volume 5, Issue 1 11

