Page 16 - IJB-5-1
P. 16

Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective
               191–203. https://doi.org/10.1177/0883911513481892.  and biomaterials for future developments of bioprinting and
           68.  Zhao X, Liu L, Wang J, et al., 2014, In vitro vascularization of   biofabrication. Biofabrication, 2: 14110–14116. https://doi.
               a combined system based on a 3D printing technique. J Tissue   org/10.1088/1758-5082/2/1/014110.
               Eng Regen Med, 10(10): 833–842. https://doi.org/10.1002/  80.  Moroni  L,  Boland  T, Burdick  J  A,  et  al., 2017,
               term.1863.                                          Biofabrication:  A guide to technology  and terminology.
           69.  Yao R, Zhang R, Yan Y, et al., 2009, In vitro angiogenesis of   Trends Biotechnol, 36(4): 384–402. https://doi.org/10.1016/j.
               3D tissue engineered adipose tissue. J Bioact Compat Polym,   tibtech.2017.10.015.
               24(1): 5–24. https://doi.org/10.1177/0883911508099367.  81.  Mir  T  A, Nakamura  M., 2017, 3D–bio printing:  Towards
           70.  Xu M, Wang X, Yan Y, et al.,2010, A cell–assembly derived   the era of manufacturing human organs as spare parts for
               physiological  3D model of the metabolic  syndrome, based   healthcare and medicine. Tissue Eng Part B, 23(3): 245–256.
               on adipose–derived stromal cells and a gelatin/alginate/  https://doi.org/10.1089/ten.teb.2016.0398.  https://doi.
               fibrinogen matrix. Biomaterials, 31 (14): 3868–3877. https://  org/10.1042/BA20030108.
               doi.org/10.1016/j.biomaterials.2010.01.111.     82.  Sun  W, Lal P., 2004, Recent development on computer
           71.  Xu M, Yan Y, Liu H, et al., 2009, Control adipose–derived   aided tissue engineering:  Overview, scope and challenges.
               stromal cells differentiation into adipose and endothelial cells   Biotechnol Appl Biochem, 39: 29–47. https://doi.org/10.1042/
               in a 3–D structure established by cell–assembly technique.   BA20030108.
               Adv Obstetr Gynecol, 57(1): 279–283.            83.  Sanjairaj V., 2016, 3D bioprinting of skin: A state–of–the–art
           72.  Li  S,  Yan  Y, Xiong Z,  et  al., 2009, Gradient  hydrogel   review on modeling, materials, and processes. Biofabrication.
               construct based on an improved cell assembling system.   8(3): 32001. https://doi.org/10.1088/1758-5090/8/3/032001.
               J Bioact  Compat Polym, 24(1): 84–99. https://doi.  84.  Whitford  W, Hoying J B., 2017, Digital  biomanufacturing
               org/10.1177/0883911509103357.                       supporting vascularization in 3D bioprinting. Int J Bioprint,
           73.  Xu Y, Wang X, 2015, Fluid and cell behaviors along a 3D   3(1): 18–26. https://doi.org/10.18063/IJB.2017.01.002.
               printed  alginate/gelatin/fibrin  channel.  Biotechnol  Bioeng,   85.  Brown  F,  Hahn  M.,  2012,  Informatics  technologies  in  an
               112(8): 1683–1695. https://doi.org/10.1002/bit.25579.  evolving R and D landscape. Bioprocess Int, 10(6): 64–69.
           74.  Ghazanfari  A, Li  W, Leu  M C,  et  al.,  2017.  A novel   86.  Hiller J, Lipson H., 2009, Design and analysis of digital
               freeform extrusion fabrication  process for producing   materials for physical 3D voxel printing. Rapid Prototyp J,
               solid ceramic  components  with uniform  layered  radiation   15: 137–149. https://doi.org/10.1108/13552540910943441.
               drying. Addit Manuf, 15:102–112. https://doi.org/10.1016/j.  87.  da Silva J  V, Martins  T  A, Noritomi P  Y.,2012, Scaffold
               addma.2017.04.001.                                  informatics  and  biomimetic  design:  Three–dimensional
           75.  Lee J S, Hong J M, Jung J  W,  et al., 2014, 3D printing   medical  reconstruction.  Methods Mol Biol,  868: 91–109.
               of  composite  tissue  with  complex  shape  applied  to  ear   https://doi.org/10.1007/978-1-61779-764-4_6.
               regeneration.  Biofabrication, 6(2): 24103. https://doi.  88.  Fan H, Scott C., 2015, From chips to CHO cells: IT advances
               org/10.1088/1758-5082/6/2/024103.                   in upstream bioprocessing. Bioprocess Int, 13(11): 14–29.
           76.  Duan B, Kapetanovic E, Hockaday L A, et al., 2014, Three–  89.  John G  T., 2016, Using optical sensors for bioprocess
               dimensional printed trileaflet valve conduits using biological   monitoring:  A measurement  technique for bioprocessors.
               hydrogels and human valve interstitial cells. Acta Biomateria,   Bioprocess Int, 14(3): S45–S48.
               10: 1836–1846. https://doi.org/10.1016/j.actbio.2013.12.005.  90.  Schmitt S., 2015, Information instead of data: User–friendly
           77.  Kolesky D B, Homan K A, Skylar–Scott M A, et al., 2016,   HMI concept increases process control efficiency. Bioprocess
               Three–dimensional bioprinting of thick vascularized tissues.   Int, 13(5): 42–46.
               Proc Nat Acad Sci, 113: 3179–3184. https://doi.org/10.1073/  91.  Moore C., 2016, Harnessing the power of big data to improve
               pnas.1521342113.                                    drug R and D. Bioprocess Int, 14(8) 2016: 64;
           78.  Campos D F, Blaeser A, Korsten A, et al., 2014, The stiffness   92.  Unadkat H  V, Hulsman M,  Cornelissen K,  et al., 2011,
               and structure of three–dimensional printed hydrogels direct   An algorithm–based topographical biomaterials  library  to
               the  differentiation of mesenchymal  stromal  cells  toward   instruct cell fate.  Proc Nat  Acad Sci,  108: 16565–16570.
               adipogenic  and  osteogenic  lineage. Tissue Eng  Part A,   https://doi.org/10.1073/pnas.1109861108.
               21: 740–756. https://doi.org/10.1089/ten.tea.2014.0231.  93.  Dalby M J, Gadegaard  N, Oreffo R O., 2014, Harnessing
           79.  Nakamura M, Iwanaga S, Henmi C, et al., 2010, Biomatrices   nanotopography and integrin–matrix interactions to influence

           10                          International Journal of Bioprinting (2019)–Volume 5, Issue 1
   11   12   13   14   15   16   17   18   19   20   21