Page 41 - IJB-6-3
P. 41

Shpichka, et al.
           9.   Brown AE, Litvinov RI, Discher DE, et al., 2009, Multiscale   10.3233/bir-1973-10105.
               Mechanics  of Fibrin Polymer:  Gel Stretching  with Protein   23.  Weisel  JW,  2004, The  Mechanical  Properties  of  Fibrin  for
               Unfolding  and  Loss  of  Water.  Science,  325:741–4.  DOI:   Basic Scientists and Clinicians. Biophys Chem, 112:267–76.
               10.4016/12254.01                                24.  Carr ME, Shen LL, Hermans J, 1976, A Physical Standard of
           10.  Mosesson MW, 2005, Fibrinogen and Fibrin Structure and   Fibrinogen: Measurement of the Elastic Modulus of Dilute
               Functions. J Thromb Haemost, 3:1894–904.            Fibrin Gels with a New Elastometer. Anal Biochem, 72:202–
           11.  Fuss C, Palmaz JC, Sprague EA, 2001, Fibrinogen: Structure,   11. DOI: 10.1016/0003-2697(76)90522-4.
               Function,  and  Surface  Interactions.  J  Vasc Interv  Radiol,   25.  Kaibara  M,  1973,  Dynamic  Viscoelastic  Study  of  the
               12:677–82.                                          Formation  of Fibrin Networks in Fibrinogen-Thrombin
           12.  Kattula  S,  Byrnes  JR,  Wolberg AS,  2017,  Fibrinogen  and   Systems and Plasma. Biorheology, 10:61–73. DOI: 10.3233/
               Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb   bir-1973-10109.
               Vasc Biol, 37:e13–e21. DOI: 10.1161/atvbaha.117.308564.  26.  Kim  OV,  Litvinov  RI,  Weisel  JW,  et  al.,  2014,  Structural
           13.  Fish  RJ,  Neerman-Arbez  M,  2012,  Fibrinogen  Gene   Basis for the Nonlinear Mechanics of Fibrin Networks under
               Regulation.  Thromb Haemost,  108:419–26.  DOI:  10.1160/  Compression.  Biomaterials,  35:6739–49.  DOI:  10.1016/j.
               th12-04-0273.                                       biomaterials.2014.04.056.
           14.  Yang Z, Mochalkin I, Doolittle RF, 2000, A Model of Fibrin   27.  Shpichka AI, Konarev PV, Efremov YM, et al., 2020, Digging
               Formation  Based  on  Crystal  Structures  of Fibrinogen  and   Deeper: Structural Background of PEGylated Fibrin Gels in
               Fibrin  Fragments  Complexed  with  Synthetic  Peptides.   Cell Migration and Lumenogenesis. RSC Adv, 10:4190–200.
               Proc Natl  Acad Sci U S  A,  97:14156–61.  DOI:  10.1073/  DOI: 10.1039/c9ra08169k.
               pnas.97.26.14156.                               28.  Jaramillo  M,  Singh  SS, Velankar  S,  et al.,  2015,  Inducing
           15.  Chapin JC, Hajjar KA, 2015, Fibrinolysis and the Control of   Endoderm Differentiation  by Modulating Mechanical
               Blood  Coagulation.  Blood  Rev,  29:17–24.  DOI:  10.1016/j.  Properties of Soft Substrates. J Tissue Eng Regen Med, 9:1–
               blre.2014.09.003.                                   12. DOI: 10.1002/term.1602.
           16.  Cesarman-Maus G, Hajjar KA, 2005, Molecular Mechanisms   29.  Shapira-Schweitzer  K,  Seliktar  D,  2007,  Matrix  Stiffness
               of  Fibrinolysis.  Br J  Haematol,  129:307-21.  DOI:   Affects Spontaneous Contraction of Cardiomyocytes
               10.1111/j.1365-2141.2005.05444.x.                   Cultured within a PEGylated Fibrinogen Biomaterial. Acta
           17.  Litvinov RI, Weisel JW, 2017, Fibrin Mechanical Properties   Biomater, 3:33–41. DOI: 10.1016/j.actbio.2006.09.003.
               and  their  Structural  Origins.  Matrix Biol,  60–61:110–23.   30.  Jansen  KA,  Bacabac  RG,  Piechocka  IK,  et al.,  2013,
               DOI: 10.1016/j.matbio.2016.08.003.                  Cells  Actively Stiffen Fibrin Networks by Generating
           18.  Janmey  PA, Amis  EJ,  Ferry  JD,  1983,  Rheology  of  Fibrin   Contractile Stress. Biophys J, 105:2240–51. DOI: 10.1016/j.
               Clots. VI. Stress Relaxation, Creep, and Differential Dynamic   bpj.2013.10.008.
               Modulus  of  Fine  Clots  in  Large  Shearing  Deformations.   31.  Panwar A, Tan LP, 2016, Current Status of Bioinks for Micro-
               J Rheol, 27:135–53. DOI: 10.1122/1.549722.          extrusion-based  3D  Bioprinting.  Molecules,  21:685.  DOI:
           19.  Martens  TP,  Godier  AF,  Parks  JJ,  et  al.,  2009,   10.3390/molecules21060685.
               Percutaneous Cell Delivery into the Heart Using Hydrogels   32.  Zhao Y, Yao R, Ouyang L, et al., 2014, Three-Dimensional
               Polymerizing  In Situ.  Cell  Transplant,  18:297–304.  DOI:   Printing  of  Hela  Cells  for  Cervical  Tumor  Model  In
               10.3727/096368909788534915.                         Vitro.  Biofabrication,  6:035001.  DOI:  10.1088/1758-
           20.  Metry G, Adhikarla R, Schneditz D, et al., 2011, Effect of   5082/6/3/035001.
               Changes  in  the  Intravascular  Volume  during  Hemodialysis   33.  Xu W, Wang X, Yan Y, et al., 2007, Rapid Prototyping Three-
               on  Blood  Viscoelasticity.  Indian  J Nephrol,  21:95.  DOI:   Dimensional Cell/Gelatin/Fibrinogen Constructs for Medical
               10.4103/0971-4065.82139.                            Regeneration. J Bioact Compat Polym, 22:363–77.
           21.  Zhao H, Ma L, Zhou J, et al., 2008, Fabrication and Physical   34.  Shikanov A, Xu M, Woodruff TK, et al., 2009, Interpenetrating
               and Biological Properties of Fibrin gel Derived from Human   Fibrin  Alginate  Matrices for in  Vitro Ovarian Follicle
               Plasma.  Biomed Mater,  3:1–10.  DOI:  10.1088/1748-  Development.  Biomaterials,  30:5476–85.  DOI:  10.1016/j.
               6041/3/1/015001.                                    biomaterials.2009.06.054.
           22.  Roberts  WW,  Lorand  L,  Mockros  LF,  1973,  Viscoelastic   35.  Lai VK, Lake SP, Frey CR, et al., 2012, Mechanical Behavior
               Properties  of  Fibrin  Clots.  Biorheology,  10:29–42.  DOI:   of Collagen-Fibrin Co-Gels Reflects Transition From Series

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 3        37
   36   37   38   39   40   41   42   43   44   45   46