Page 41 - IJB-6-3
P. 41
Shpichka, et al.
9. Brown AE, Litvinov RI, Discher DE, et al., 2009, Multiscale 10.3233/bir-1973-10105.
Mechanics of Fibrin Polymer: Gel Stretching with Protein 23. Weisel JW, 2004, The Mechanical Properties of Fibrin for
Unfolding and Loss of Water. Science, 325:741–4. DOI: Basic Scientists and Clinicians. Biophys Chem, 112:267–76.
10.4016/12254.01 24. Carr ME, Shen LL, Hermans J, 1976, A Physical Standard of
10. Mosesson MW, 2005, Fibrinogen and Fibrin Structure and Fibrinogen: Measurement of the Elastic Modulus of Dilute
Functions. J Thromb Haemost, 3:1894–904. Fibrin Gels with a New Elastometer. Anal Biochem, 72:202–
11. Fuss C, Palmaz JC, Sprague EA, 2001, Fibrinogen: Structure, 11. DOI: 10.1016/0003-2697(76)90522-4.
Function, and Surface Interactions. J Vasc Interv Radiol, 25. Kaibara M, 1973, Dynamic Viscoelastic Study of the
12:677–82. Formation of Fibrin Networks in Fibrinogen-Thrombin
12. Kattula S, Byrnes JR, Wolberg AS, 2017, Fibrinogen and Systems and Plasma. Biorheology, 10:61–73. DOI: 10.3233/
Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb bir-1973-10109.
Vasc Biol, 37:e13–e21. DOI: 10.1161/atvbaha.117.308564. 26. Kim OV, Litvinov RI, Weisel JW, et al., 2014, Structural
13. Fish RJ, Neerman-Arbez M, 2012, Fibrinogen Gene Basis for the Nonlinear Mechanics of Fibrin Networks under
Regulation. Thromb Haemost, 108:419–26. DOI: 10.1160/ Compression. Biomaterials, 35:6739–49. DOI: 10.1016/j.
th12-04-0273. biomaterials.2014.04.056.
14. Yang Z, Mochalkin I, Doolittle RF, 2000, A Model of Fibrin 27. Shpichka AI, Konarev PV, Efremov YM, et al., 2020, Digging
Formation Based on Crystal Structures of Fibrinogen and Deeper: Structural Background of PEGylated Fibrin Gels in
Fibrin Fragments Complexed with Synthetic Peptides. Cell Migration and Lumenogenesis. RSC Adv, 10:4190–200.
Proc Natl Acad Sci U S A, 97:14156–61. DOI: 10.1073/ DOI: 10.1039/c9ra08169k.
pnas.97.26.14156. 28. Jaramillo M, Singh SS, Velankar S, et al., 2015, Inducing
15. Chapin JC, Hajjar KA, 2015, Fibrinolysis and the Control of Endoderm Differentiation by Modulating Mechanical
Blood Coagulation. Blood Rev, 29:17–24. DOI: 10.1016/j. Properties of Soft Substrates. J Tissue Eng Regen Med, 9:1–
blre.2014.09.003. 12. DOI: 10.1002/term.1602.
16. Cesarman-Maus G, Hajjar KA, 2005, Molecular Mechanisms 29. Shapira-Schweitzer K, Seliktar D, 2007, Matrix Stiffness
of Fibrinolysis. Br J Haematol, 129:307-21. DOI: Affects Spontaneous Contraction of Cardiomyocytes
10.1111/j.1365-2141.2005.05444.x. Cultured within a PEGylated Fibrinogen Biomaterial. Acta
17. Litvinov RI, Weisel JW, 2017, Fibrin Mechanical Properties Biomater, 3:33–41. DOI: 10.1016/j.actbio.2006.09.003.
and their Structural Origins. Matrix Biol, 60–61:110–23. 30. Jansen KA, Bacabac RG, Piechocka IK, et al., 2013,
DOI: 10.1016/j.matbio.2016.08.003. Cells Actively Stiffen Fibrin Networks by Generating
18. Janmey PA, Amis EJ, Ferry JD, 1983, Rheology of Fibrin Contractile Stress. Biophys J, 105:2240–51. DOI: 10.1016/j.
Clots. VI. Stress Relaxation, Creep, and Differential Dynamic bpj.2013.10.008.
Modulus of Fine Clots in Large Shearing Deformations. 31. Panwar A, Tan LP, 2016, Current Status of Bioinks for Micro-
J Rheol, 27:135–53. DOI: 10.1122/1.549722. extrusion-based 3D Bioprinting. Molecules, 21:685. DOI:
19. Martens TP, Godier AF, Parks JJ, et al., 2009, 10.3390/molecules21060685.
Percutaneous Cell Delivery into the Heart Using Hydrogels 32. Zhao Y, Yao R, Ouyang L, et al., 2014, Three-Dimensional
Polymerizing In Situ. Cell Transplant, 18:297–304. DOI: Printing of Hela Cells for Cervical Tumor Model In
10.3727/096368909788534915. Vitro. Biofabrication, 6:035001. DOI: 10.1088/1758-
20. Metry G, Adhikarla R, Schneditz D, et al., 2011, Effect of 5082/6/3/035001.
Changes in the Intravascular Volume during Hemodialysis 33. Xu W, Wang X, Yan Y, et al., 2007, Rapid Prototyping Three-
on Blood Viscoelasticity. Indian J Nephrol, 21:95. DOI: Dimensional Cell/Gelatin/Fibrinogen Constructs for Medical
10.4103/0971-4065.82139. Regeneration. J Bioact Compat Polym, 22:363–77.
21. Zhao H, Ma L, Zhou J, et al., 2008, Fabrication and Physical 34. Shikanov A, Xu M, Woodruff TK, et al., 2009, Interpenetrating
and Biological Properties of Fibrin gel Derived from Human Fibrin Alginate Matrices for in Vitro Ovarian Follicle
Plasma. Biomed Mater, 3:1–10. DOI: 10.1088/1748- Development. Biomaterials, 30:5476–85. DOI: 10.1016/j.
6041/3/1/015001. biomaterials.2009.06.054.
22. Roberts WW, Lorand L, Mockros LF, 1973, Viscoelastic 35. Lai VK, Lake SP, Frey CR, et al., 2012, Mechanical Behavior
Properties of Fibrin Clots. Biorheology, 10:29–42. DOI: of Collagen-Fibrin Co-Gels Reflects Transition From Series
International Journal of Bioprinting (2020)–Volume 6, Issue 3 37

