Page 44 - IJB-6-3
P. 44
Fibrin-based Bioinks
26:1369–79. DOI: 10.1016/j.biomaterials.2004.04.045. Functional and Contractile Cardiac Tissue Constructs. Acta
79. Koroleva A, Deiwick A, Nguyen A, et al., 2016, Hydrogel- Biomater, 70:48–56. DOI: 10.1016/j.actbio.2018.02.007.
based Microfluidics for Vascular Tissue Engineering. 91. Oztan YC, Nawafleh N, Zhou Y, et al., 2020, Recent
BioNanoMaterials, 17:19–32. DOI: 10.1515/bnm-2015-0026. Advances on Utilization of Bioprinting for Tumor Modeling.
80. Morin KT, Smith AO, Davis GE, et al., 2013, Aligned Human Bioprinting, 18:e00079. DOI: 10.1016/j.bprint.2020.e00079.
Microvessels Formed in 3D Fibrin Gel by Constraint of Gel 92. Lee C, Abelseth E, de la Vega L, et al., 2019, Bioprinting
Contraction. Microvasc Res, 90:12–22. DOI: 10.1016/j. a Novel Glioblastoma Tumor Model Using a Fibrin-based
mvr.2013.07.010. Bioink for Drug Screening. Mater Today Chem, 12:78–84.
81. Bootle-Wilbraham CA, Tazzyman S, Thompson DOI: 10.1016/j.mtchem.2018.12.005.
WD, et al., 2001, Fibrin Fragment E Stimulates the 93. Piard C, Jeyaram A, Liu Y, et al., 2019, 3D Printed
Proliferation, Migration and Differentiation of Human HUVECs/MSCs Cocultures Impact Cellular Interactions and
Microvascular Endothelial Cells In Vitro. Angiogenesis, Angiogenesis Depending on Cell-cell Distance. Biomaterials,
4:269–75. DOI: 10.1023/a:1016076121918. 222:119423. DOI: 10.1016/j.biomaterials.2019.119423.
82. Thompson WD, Smith EB, Stirk CM, et al., 1992, Angiogenic 94. Zhang K, Fu Q, Yoo J, et al., 2017, 3D Bioprinting of Urethra
Activity of Fibrin Degradation Products is Located in with PCL/PLCL Blend and Dual Autologous Cells in Fibrin
Fibrin Fragment E. J Pathol, 168:47–53. DOI: 10.1002/ Hydrogel: An In Vitro Evaluation of Biomimetic Mechanical
path.1711680109. Property and Cell Growth Environment. Acta Biomater,
83. Jozkowicz A, Fügl A, Nanobashvili J, et al., 2003, Delivery 50:154–64. DOI: 10.1016/j.actbio.2016.12.008.
of High dose VEGF Plasmid Using Fibrin Carrier does 95. Freeman S, Ramos R, Chando PA, et al., 2019, A Bioink
Not Influence its Angiogenic Potency. Int J Artif Organs, Blend for Rotary 3D Bioprinting Tissue Engineered Small-
26(2):161–9. DOI: 10.1177/039139880302600211. diameter Vascular Constructs. Acta Biomater, 95:152–64.
84. Noori A, Ashrafi SJ, Vaez-Ghaemi R, et al., 2017, A Review DOI: 10.1016/j.actbio.2019.06.052.
of Fibrin and Fibrin Composites for Bone Tissue Engineering. 96. Koch L, Deiwick A, Franke A, et al., 2018, Laser Bioprinting
Int J Nanomed, 12:4937–61. DOI: 10.2147/ijn.s124671. of Human Induced Pluripotent Stem Cells the Effect of
85. Blache U, Ehrbar M, 2018, Inspired by Nature: Hydrogels as Printing and Biomaterials on Cell Survival, Pluripotency,
Versatile Tools for Vascular Engineering. Adv Wound Care, and Differentiation. Biofabrication, 10:35005. DOI:
7:232–46. DOI: 10.1089/wound.2017.0760. 10.1088/1758-5090/aab981.
86. Li Y, Meng H, Liu Y, et al., 2015, Fibrin Gel as an 97. Gruene M, Pflaum M, Hess C, et al., 2011, Laser Printing of
Injectable Biodegradable Scaffold and Cell Carrier for Three-dimensional Multicellular Arrays for Studies of Cell-
Tissue Engineering. Sci World J, 2015:685690. DOI: cell and Cell-environment Interactions. Tissue Eng Part C
10.1155/2015/685690. Methods, 17:973–82. DOI: 10.1089/ten.tec.2011.0185.
87. Cubo N, Garcia M, Del Cañizo JF, et al., 2017, 3D 98. O’Donnell N, Okkelman IA, Timashev P, et al., 2018,
Bioprinting of Functional Human Skin: Production and In Cellulose-based Scaffolds for Fluorescence Lifetime
Vivo Analysis. Biofabrication, 9:15006. DOI: 10.1088/1758- Imaging-assisted Tissue Engineering. Acta Biomater, 80:85–
5090/9/1/015006. 96. DOI: 10.1016/j.actbio.2018.09.034.
88. Albanna M, Binder KW, Murphy SV, et al., 2019, In Situ 99. McQuilten ZK, Bailey M, Cameron PA, et al., 2017, Fibrinogen
Bioprinting of Autologous Skin Cells Accelerates Wound Concentration and Use of Fibrinogen Supplementation with
Healing of Extensive Excisional Full-Thickness Wounds. Sci Cryoprecipitate in Patients with Critical Bleeding Receiving
Rep, 9:1–15. DOI: 10.1038/s41598-018-38366-w. Massive Transfusion: A Bi-national Cohort Study. Br J
89. Kumar SA, Alonzo M, Allen SC, et al., 2019, A Visible Light- Haematol, 179:131–41. DOI: 10.1111/bjh.14804.
Cross-Linkable, Fibrin-Gelatin-Based Bioprinted Construct 100. Ahlfeld T, Cubo-Mateo N, Cometta S, et al., 2020, A Novel
with Human Cardiomyocytes and Fibroblasts. ACS Biomater Plasma-based Bioink Stimulates Cell Proliferation and
Sci Eng, 5:4551–63. DOI: 10.1021/acsbiomaterials.9b00505. Differentiation in Bioprinted, Mineralized Constructs. ACS Appl
90. Wang Z, Lee SJ, Cheng H, et al., 2018, 3D Bioprinted Mater Interfaces, 12:12557-72. DOI: 10.1021/acsami.0c00710.
40 International Journal of Bioprinting (2020)–Volume 6, Issue 3

