Page 44 - IJB-6-3
P. 44

Fibrin-based Bioinks
               26:1369–79. DOI: 10.1016/j.biomaterials.2004.04.045.  Functional and Contractile Cardiac Tissue Constructs. Acta
           79.  Koroleva A, Deiwick A, Nguyen A, et al., 2016, Hydrogel-  Biomater, 70:48–56. DOI: 10.1016/j.actbio.2018.02.007.
               based  Microfluidics  for  Vascular  Tissue  Engineering.   91.  Oztan  YC,  Nawafleh  N,  Zhou  Y,  et al.,  2020,  Recent
               BioNanoMaterials, 17:19–32. DOI: 10.1515/bnm-2015-0026.  Advances on Utilization of Bioprinting for Tumor Modeling.
           80.  Morin KT, Smith AO, Davis GE, et al., 2013, Aligned Human   Bioprinting, 18:e00079. DOI: 10.1016/j.bprint.2020.e00079.
               Microvessels Formed in 3D Fibrin Gel by Constraint of Gel   92.  Lee C, Abelseth E, de la Vega L, et al., 2019, Bioprinting
               Contraction.  Microvasc Res,  90:12–22.  DOI:  10.1016/j.  a  Novel  Glioblastoma  Tumor  Model  Using a  Fibrin-based
               mvr.2013.07.010.                                    Bioink for Drug Screening. Mater Today Chem, 12:78–84.
           81.  Bootle-Wilbraham   CA,   Tazzyman   S,   Thompson   DOI: 10.1016/j.mtchem.2018.12.005.
               WD,  et al.,  2001,  Fibrin  Fragment  E  Stimulates  the   93.  Piard  C,  Jeyaram  A,  Liu  Y,  et al.,  2019,  3D  Printed
               Proliferation,  Migration  and  Differentiation  of  Human   HUVECs/MSCs Cocultures Impact Cellular Interactions and
               Microvascular  Endothelial  Cells  In Vitro.  Angiogenesis,   Angiogenesis Depending on Cell-cell Distance. Biomaterials,
               4:269–75. DOI: 10.1023/a:1016076121918.             222:119423. DOI: 10.1016/j.biomaterials.2019.119423.
           82.  Thompson WD, Smith EB, Stirk CM, et al., 1992, Angiogenic   94.  Zhang K, Fu Q, Yoo J, et al., 2017, 3D Bioprinting of Urethra
               Activity  of Fibrin Degradation  Products is Located  in   with PCL/PLCL Blend and Dual Autologous Cells in Fibrin
               Fibrin  Fragment  E.  J  Pathol,  168:47–53.  DOI:  10.1002/  Hydrogel: An In Vitro Evaluation of Biomimetic Mechanical
               path.1711680109.                                    Property  and  Cell  Growth  Environment.  Acta Biomater,
           83.  Jozkowicz A, Fügl A, Nanobashvili J, et al., 2003, Delivery   50:154–64. DOI: 10.1016/j.actbio.2016.12.008.
               of  High  dose  VEGF  Plasmid  Using  Fibrin  Carrier  does   95.  Freeman  S,  Ramos  R,  Chando  PA,  et al.,  2019, A  Bioink
               Not  Influence  its Angiogenic  Potency.  Int J  Artif Organs,   Blend for Rotary 3D Bioprinting Tissue Engineered Small-
               26(2):161–9. DOI: 10.1177/039139880302600211.       diameter  Vascular  Constructs.  Acta  Biomater,  95:152–64.
           84.  Noori A, Ashrafi SJ, Vaez-Ghaemi R, et al., 2017, A Review   DOI: 10.1016/j.actbio.2019.06.052.
               of Fibrin and Fibrin Composites for Bone Tissue Engineering.   96.  Koch L, Deiwick A, Franke A, et al., 2018, Laser Bioprinting
               Int J Nanomed, 12:4937–61. DOI: 10.2147/ijn.s124671.  of  Human  Induced  Pluripotent  Stem  Cells  the  Effect  of
           85.  Blache U, Ehrbar M, 2018, Inspired by Nature: Hydrogels as   Printing and Biomaterials  on Cell  Survival, Pluripotency,
               Versatile Tools for Vascular Engineering. Adv Wound Care,   and  Differentiation.  Biofabrication,  10:35005.  DOI:
               7:232–46. DOI: 10.1089/wound.2017.0760.             10.1088/1758-5090/aab981.
           86.  Li  Y,  Meng  H,  Liu  Y,  et  al.,  2015,  Fibrin  Gel  as  an   97.  Gruene M, Pflaum M, Hess C, et al., 2011, Laser Printing of
               Injectable Biodegradable  Scaffold and Cell  Carrier  for   Three-dimensional Multicellular Arrays for Studies of Cell-
               Tissue  Engineering.  Sci World J,  2015:685690.  DOI:   cell  and  Cell-environment  Interactions.  Tissue Eng Part  C
               10.1155/2015/685690.                                Methods, 17:973–82. DOI: 10.1089/ten.tec.2011.0185.
           87.  Cubo  N,  Garcia  M,  Del  Cañizo  JF,  et  al.,  2017,  3D   98.  O’Donnell  N,  Okkelman  IA,  Timashev  P,  et  al.,  2018,
               Bioprinting  of  Functional  Human  Skin:  Production  and  In   Cellulose-based  Scaffolds for Fluorescence  Lifetime
               Vivo Analysis. Biofabrication, 9:15006. DOI: 10.1088/1758-  Imaging-assisted Tissue Engineering. Acta Biomater, 80:85–
               5090/9/1/015006.                                    96. DOI: 10.1016/j.actbio.2018.09.034.
           88.  Albanna  M,  Binder  KW,  Murphy  SV,  et  al.,  2019,  In Situ   99.  McQuilten ZK, Bailey M, Cameron PA, et al., 2017, Fibrinogen
               Bioprinting  of  Autologous  Skin  Cells  Accelerates  Wound   Concentration and Use of Fibrinogen Supplementation with
               Healing of Extensive Excisional Full-Thickness Wounds. Sci   Cryoprecipitate in Patients with Critical Bleeding Receiving
               Rep, 9:1–15. DOI: 10.1038/s41598-018-38366-w.       Massive  Transfusion:  A  Bi-national  Cohort  Study.  Br J
           89.  Kumar SA, Alonzo M, Allen SC, et al., 2019, A Visible Light-  Haematol, 179:131–41. DOI: 10.1111/bjh.14804.
               Cross-Linkable,  Fibrin-Gelatin-Based  Bioprinted  Construct   100.  Ahlfeld T, Cubo-Mateo N, Cometta S, et al., 2020, A Novel
               with Human Cardiomyocytes and Fibroblasts. ACS Biomater   Plasma-based Bioink Stimulates Cell Proliferation and
               Sci Eng, 5:4551–63. DOI: 10.1021/acsbiomaterials.9b00505.  Differentiation in Bioprinted, Mineralized Constructs. ACS Appl
           90.  Wang  Z,  Lee  SJ,  Cheng  H,  et  al.,  2018,  3D  Bioprinted   Mater Interfaces, 12:12557-72. DOI: 10.1021/acsami.0c00710.






           40                          International Journal of Bioprinting (2020)–Volume 6, Issue 3
   39   40   41   42   43   44   45   46   47   48   49