Page 43 - IJB-6-3
P. 43
Shpichka, et al.
Bioengineering of Dental Stem Cells in a PEGylated Fibrin stm2018.10.1.08.
Gel. Regen Med, 6:191–200. DOI: 10.2217/rme.11.3. 68. Hall H, Baechi T, Hubbell JA, 2001, Molecular Properties of
58. Gorkun AA, Shpichka AI, Zurina IM, et al., 2018, Angiogenic Fibrin-based Matrices for Promotion of Angiogenesis In Vitro.
Potential of Spheroids from Umbilical Cord and Adipose- Microvasc Res, 62:315–26. DOI: 10.1006/mvre.2001.2348.
derived Multipotent Mesenchymal Stromal Cells within 69. Bayless KJ, Salazar R, Davis GE, 2000, RGD-dependent
Fibrin Gel. Biomed Mater, 13(4):44108. DOI: 10.1088/1748- Vacuolation and Lumen Formation Observed During
605x/aac22d. Endothelial Cell Morphogenesis in Three-dimensional Fibrin
59. Ehrbar M, Zeisberger SM, Raeber GP, et al., 2008, The Matrices Involves the Alpha(v) Beta(3) and Alpha(5)beta(1)
Role of Actively Released Fibrin-Conjugated VEGF for Integrins. Am J Pathol, 156:1673–83. DOI: 10.1016/s0002-
VEGF Receptor 2 Gene Activation and the Enhancement 9440(10)65038-9.
of Angiogenesis. Biomaterials, 29:1720–9. DOI: 10.1016/j. 70. Bach TL, Barsigian C, Yaen CH, et al., 1998, Endothelial
biomaterials.2007.12.002. Cell VE-cadherin Functions as a Receptor for the β15-42
60. Liang MS, Andreadis ST, 2011, Engineering Fibrin-binding Sequence of Fibrin. J Biol Chem, 273:30719–28. DOI:
TGF-β1 for Sustained Signaling and Contractile Function of 10.1074/jbc.273.46.30719.
MSC Based Vascular Constructs. Biomaterials, 32:8684–93. 71. Carrion B, Kong YP, Kaigler D, et al., 2013, Bone Marrow-
DOI: 10.1016/j.biomaterials.2011.07.079. derived Mesenchymal Stem Cells Enhance Angiogenesis via
61. Loureiro J, Torres AL, Neto T, et al., 2019, Conjugation their α6β1 Integrin Receptor. Exp Cell Res, 319:2964–76.
of the T1 Sequence from CCN1 to Fibrin Hydrogels for DOI: 10.1016/j.yexcr.2013.09.007.
Therapeutic Vascularization. Mater Sci Eng C, 104:109847. 72. Juliar BA, Keating MT, Kong YP, et al., 2018, Sprouting
DOI: 10.1016/j.msec.2019.110514. Angiogenesis Induces Significant Mechanical Heterogeneities
62. Zhao N, Suzuki A, Zhang X, et al., 2019, Dual Aptamer- and ECM Stiffening Across Length Scales in Fibrin
Functionalized In Situ Injectable Fibrin Hydrogel for Hydrogels. Biomaterials, 162:99–108. DOI: 10.1016/j.
Promotion of Angiogenesis via Codelivery of Vascular biomaterials.2018.02.012.
Endothelial Growth Factor and Platelet-Derived Growth 73. Funahashi Y, Shawber CJ, Sharma A, et al., 2011, Notch
Factor-BB. ACS Appl Mater Interfaces, 11:18123–32. DOI: Modulates VEGF Action in Endothelial Cells by Inducing
10.1021/acsami.9b02462. Matrix Metalloprotease Activity. Vasc Cell, 3:2. DOI:
63. Mittermayr R, Slezak P, Haffner N, et al., 2016, Controlled 10.1186/2045-824x-3-2.
Release of Fibrin Matrix-Conjugated Platelet Derived Growth 74. Thi MU, Trocmé C, Montmasson MP, et al., 2012, Investigating
Factor Improves Ischemic Tissue Regeneration by Functional Metalloproteinases MMP-2 and MMP-9 Mechanosensitivity
Angiogenesis. Acta Biomater, 29:11–20. DOI: 10.1016/j. to Feedback Loops Involved in the Regulation of In Vitro
actbio.2015.10.028. Angiogenesis by Endogenous Mechanical Stresses. Acta
64. Michlits W, Mittermayr R, Schäfer R, et al., 2007, Fibrin- Biotheor, 60:21–40. DOI: 10.1007/s10441-012-9147-3.
embedded Administration of VEGF Plasmid Enhances 75. Lafleur MA, Handsley MM, Knäuper V, et al., 2002, EC
Skin Flap Survival. Wound Repair Regen, 15:360–7. DOI: tubulogenisis in fibrin requires MT-MMPs. J Cell Sci,
10.1111/j.1524-475x.2007.00238.x. 115:3427–38.
65. Mooney R, Tawil B, Mahoney M, 2010, Specific Fibrinogen 76. Kachgal S, Carrion B, Janson IA, et al., 2012, Bone Marrow
and Thrombin Concentrations Promote Neuronal Rather than Stromal Cells Stimulate an Angiogenic Program that Requires
Glial Growth when Primary Neural Cells are Seeded within Endothelial MT1-MMP. J Cell Physiol, 227:3546–55. DOI:
Plasma-derived Fibrin Gels. Tissue Eng Part A, 16:1607–19. 10.1002/jcp.24056.
DOI: 10.1089/ten.tea.2009.0372. 77. Ghajar CM, Kachgal S, Kniazeva E, et al., 2010,
66. Shpichka AI, Koroleva AV, Deiwick A, et al., 2017, Mesenchymal Cells Stimulate Capillary Morphogenesis via
Evaluation of the Vasculogenic Potential of Hydrogels Based Distinct Proteolytic Mechanisms. Exp Cell Res, 316:813–25.
on Modified Fibrin. Cell Tissue Biol, 11:81–7. DOI: 10.1134/ DOI: 10.1016/j.yexcr.2010.01.013.
s1990519x17010126. 78. Urech L, Bittermann AG, Hubbell JA, et al., 2005, Mechanical
67. Shpichka AI, Revkova VA, Aksenova NA, et al., 2018, Properties, Proteolytic Degradability and Biological
Transparent PEG-fibrin Gel as a Flexible Tool for Cell Modifications Affect Angiogenic Process Extension Into
Encapsulation. Sovrem Tehnol Med, 10:64–9. DOI: 10.17691/ Native and Modified Fibrin Matrices In Vitro. Biomaterials,
International Journal of Bioprinting (2020)–Volume 6, Issue 3 39

