Page 477 - IJB-10-6
P. 477

International Journal of Bioprinting                                 Stress prediction in 3D-printed scaffolds




            4.   Anjum S, Rahman F, Pandey P, et al. Electrospun biomimetic   16.  Su J, Hua S, Chen A, et al. Three-dimensional printing of
               nanofibrous scaffolds: a promising prospect for bone tissue   gyroid-structured composite bioceramic  scaffolds  with
               engineering and regenerative medicine.  Int J Mol Sci.   tuneable degradability. Biomater Adv. 2021;133:112595.
               2022;23(16):9206.                                  doi: 10.1016/j.msec.2021.112595
               doi: 10.3390/ijms23169206
                                                               17.  Xiao J, Xue H, Qian Z, et al. Jumbo bionic trabecular metal
            5.   Huang L, Zhang J, Liu X, et al. L-Arginine/nanofish bone   acetabular cups improve cup stability during acetabular
               nanocomplex enhances bone regeneration via antioxidant   bone defect reconstruction:a finite element analysis study.
               activities and osteoimmunomodulatory properties. Chinese   J Bionic Eng. 2023;20(6):2814-2825.
               Chem Lett. 2021;32(1):234-238.                     doi: 10.1007/s42235-023-00413-2
               doi: 10.1016/j.cclet.2020.11.046                18.  Liu L, Liu C, Deng C, et al. Design and performance analysis
            6.   Liu X, Ma PX. Polymeric scaffolds for bone tissue   of 3D-printed stiffness gradient femoral scaffold. J Orthop
               engineering. Ann Biomed Eng. 2004;32(3):9622-9629.   Surg Res. 2023;18(1):120.
               doi: 10.1023/b:abme.0000017544.36001.8e            doi: 10.1186/s13018-023-03612-z
            7.   Pareek A, Reardon PJ, Macalena JA, et al. Osteochondral   19.  Pang S, Wu D, Gurlo A, Kurreck J, Hanaor DAH. Additive
               autograft transfer versus microfracture in the knee: a meta-  manufacturing and performance of bioceramic scaffolds
               analysis of prospective comparative studies at midterm.   with different hollow strut geometries.  Biofabrication
               Arthroscopy. 2016;32(10):2118-2130.                2023;15(2):025011.
               doi: 10.1016/j.arthro.2016.05.038                  doi: 10.1088/1758-5090/acb387
            8.   Zhou S, Jung S, Hwang J. Mechanical analysis of femoral   20.  Hao YL, Li S-J, Yang R. Biomedical titanium alloys and
               stress-riser fractures. Clin Biomech. 2019;63:10-15.   their additive manufacturing.  Rare Metals. 2016;35(009):
               doi: 10.1016/j.clinbiomech.2019.02.004             661-671.
                                                                  doi: 10.1007/s12598-016-0793-5
            9.   Huo J, Dérand P, Rnnar LE, et al. Failure location prediction
               by finite element analysis for an additive manufactured   21.  Melenka GW, Schofield JS,Dawson MR, Carey JP.
               mandible implant. Med Eng Phys. 2015;37(9):862-869.   Evaluation of dimensional accuracy and material properties
               doi: 10.1016/j.medengphy.2015.06.001               of the MakerBot 3D desktop printer.  Rapid Prototyping J.
                                                                  2015;21(5):618-627.
            10.  Dong J, Li Y, Lin P, et al. Solvent-cast 3D printing of      doi: 10.1108/rpj-09-2013-0093
               magnesium scaffolds. Acta Biomater. 2020;114:497-514.
               doi: 10.1016/j.actbio.2020.08.002               22.  Sharma R, Singh R, Penna R, Fraternali F. Investigations for
                                                                  mechanical properties of Hap, PVC and PP based 3D porous
            11.  Barbetta A, Costantini M. Gas Foaming Technologies for 3D   structures obtained through biocompatible FDM filaments.
               Scaffold Engineering. Woodhead Publishing; 2018:127-149.   Compos Part B-Eng. 2018;132:237-243.
               doi: 10.1016/b978-0-08-100979-6.00006-9            doi: 10.1016/j.compositesb.2017.08.021
            12.  Kordjamshidi A, Saber-Samandari S, Nejad MG, Khandan   23.  Muhammad A, Ali MA, Shanono IH. Fatigue and harmonic
               A. Preparation of novel porous calcium silicate scaffold   analysis of a diesel engine crankshaft using ANSYS[C]//
               loaded by celecoxib drug using freeze drying technique:   iMEC-APCOMS 2019: Proceedings of the 4th International
               fabrication, characterization and simulation.  Ceram Int.   Manufacturing Engineering Conference and The 5th Asia
               2019;45(11):14126-14135.                           Pacific Conference on Manufacturing Systems. Springer
               doi: 10.1016/j.ceramint.2019.04.113                Singapore; 2020:371-376.
            13.  Dong Z, Cui H, Zhang H, et al. 3D printing of inherently      doi: 10.1007/978-981-15-0950-6_56
               nanoporous polymers via polymerization-induced phase   24. Liu H, Ahlinder A, Yassin MA, et al. Computational and
               separation. Nat Commun. 2021;12(1):247.            experimental characterization of 3D-printed PCL structures
               doi: 10.1038/s41467-020-20498-1                    toward the design of soft biological tissue scaffolds. Mater
            14.  Maharjan B, Kaliaanagounder VK, Jang SR, et al. In-  Design. 2020;188:108488.
               situ polymerized polypyrrole nanoparticles immobilized      doi: 10.1016/j.matdes.2020.108488
               poly(ε-caprolactone) electrospun conductive scaffolds for   25.  Soufivand AA, Abolfathi N, Hashemi A, Lee SJ. Prediction
               bone tissue engineering. Mater Sci Eng C Mater Biol Appl.   of mechanical behavior of 3D bioprinted tissue-engineered
               2020;114:111056.                                   scaffolds using finite element method (FEM) analysis. Addit
               doi: 10.1016/j.msec.2020.111056                    Manuf. 2020;33(8):101181.
            15.  Shuai C, Yang W, Feng P, Peng S, Pan H. Accelerated      doi: 10.1016/j.addma.2020.101181
               degradation of HAP/PLLA bone scaffold by PGA blending   26.  de Galarreta SR, Jeffers JRT, Ghouse S. A validated finite
               facilitates  bioactivity  and  osteoconductivity.  Bioact Mater.   element analysis procedure for porous structures.  Mater
               2021;6(2):490-502.                                 Design. 2020;189:108546.
               doi: 10.1016/j.bioactmat.2020.09.001               doi: 10.1016/j.matdes.2020.108546


            Volume 10 Issue 6 (2024)                       469                                doi: 10.36922/ijb.4460
   472   473   474   475   476   477   478   479   480   481   482