Page 477 - IJB-10-6
P. 477
International Journal of Bioprinting Stress prediction in 3D-printed scaffolds
4. Anjum S, Rahman F, Pandey P, et al. Electrospun biomimetic 16. Su J, Hua S, Chen A, et al. Three-dimensional printing of
nanofibrous scaffolds: a promising prospect for bone tissue gyroid-structured composite bioceramic scaffolds with
engineering and regenerative medicine. Int J Mol Sci. tuneable degradability. Biomater Adv. 2021;133:112595.
2022;23(16):9206. doi: 10.1016/j.msec.2021.112595
doi: 10.3390/ijms23169206
17. Xiao J, Xue H, Qian Z, et al. Jumbo bionic trabecular metal
5. Huang L, Zhang J, Liu X, et al. L-Arginine/nanofish bone acetabular cups improve cup stability during acetabular
nanocomplex enhances bone regeneration via antioxidant bone defect reconstruction:a finite element analysis study.
activities and osteoimmunomodulatory properties. Chinese J Bionic Eng. 2023;20(6):2814-2825.
Chem Lett. 2021;32(1):234-238. doi: 10.1007/s42235-023-00413-2
doi: 10.1016/j.cclet.2020.11.046 18. Liu L, Liu C, Deng C, et al. Design and performance analysis
6. Liu X, Ma PX. Polymeric scaffolds for bone tissue of 3D-printed stiffness gradient femoral scaffold. J Orthop
engineering. Ann Biomed Eng. 2004;32(3):9622-9629. Surg Res. 2023;18(1):120.
doi: 10.1023/b:abme.0000017544.36001.8e doi: 10.1186/s13018-023-03612-z
7. Pareek A, Reardon PJ, Macalena JA, et al. Osteochondral 19. Pang S, Wu D, Gurlo A, Kurreck J, Hanaor DAH. Additive
autograft transfer versus microfracture in the knee: a meta- manufacturing and performance of bioceramic scaffolds
analysis of prospective comparative studies at midterm. with different hollow strut geometries. Biofabrication
Arthroscopy. 2016;32(10):2118-2130. 2023;15(2):025011.
doi: 10.1016/j.arthro.2016.05.038 doi: 10.1088/1758-5090/acb387
8. Zhou S, Jung S, Hwang J. Mechanical analysis of femoral 20. Hao YL, Li S-J, Yang R. Biomedical titanium alloys and
stress-riser fractures. Clin Biomech. 2019;63:10-15. their additive manufacturing. Rare Metals. 2016;35(009):
doi: 10.1016/j.clinbiomech.2019.02.004 661-671.
doi: 10.1007/s12598-016-0793-5
9. Huo J, Dérand P, Rnnar LE, et al. Failure location prediction
by finite element analysis for an additive manufactured 21. Melenka GW, Schofield JS,Dawson MR, Carey JP.
mandible implant. Med Eng Phys. 2015;37(9):862-869. Evaluation of dimensional accuracy and material properties
doi: 10.1016/j.medengphy.2015.06.001 of the MakerBot 3D desktop printer. Rapid Prototyping J.
2015;21(5):618-627.
10. Dong J, Li Y, Lin P, et al. Solvent-cast 3D printing of doi: 10.1108/rpj-09-2013-0093
magnesium scaffolds. Acta Biomater. 2020;114:497-514.
doi: 10.1016/j.actbio.2020.08.002 22. Sharma R, Singh R, Penna R, Fraternali F. Investigations for
mechanical properties of Hap, PVC and PP based 3D porous
11. Barbetta A, Costantini M. Gas Foaming Technologies for 3D structures obtained through biocompatible FDM filaments.
Scaffold Engineering. Woodhead Publishing; 2018:127-149. Compos Part B-Eng. 2018;132:237-243.
doi: 10.1016/b978-0-08-100979-6.00006-9 doi: 10.1016/j.compositesb.2017.08.021
12. Kordjamshidi A, Saber-Samandari S, Nejad MG, Khandan 23. Muhammad A, Ali MA, Shanono IH. Fatigue and harmonic
A. Preparation of novel porous calcium silicate scaffold analysis of a diesel engine crankshaft using ANSYS[C]//
loaded by celecoxib drug using freeze drying technique: iMEC-APCOMS 2019: Proceedings of the 4th International
fabrication, characterization and simulation. Ceram Int. Manufacturing Engineering Conference and The 5th Asia
2019;45(11):14126-14135. Pacific Conference on Manufacturing Systems. Springer
doi: 10.1016/j.ceramint.2019.04.113 Singapore; 2020:371-376.
13. Dong Z, Cui H, Zhang H, et al. 3D printing of inherently doi: 10.1007/978-981-15-0950-6_56
nanoporous polymers via polymerization-induced phase 24. Liu H, Ahlinder A, Yassin MA, et al. Computational and
separation. Nat Commun. 2021;12(1):247. experimental characterization of 3D-printed PCL structures
doi: 10.1038/s41467-020-20498-1 toward the design of soft biological tissue scaffolds. Mater
14. Maharjan B, Kaliaanagounder VK, Jang SR, et al. In- Design. 2020;188:108488.
situ polymerized polypyrrole nanoparticles immobilized doi: 10.1016/j.matdes.2020.108488
poly(ε-caprolactone) electrospun conductive scaffolds for 25. Soufivand AA, Abolfathi N, Hashemi A, Lee SJ. Prediction
bone tissue engineering. Mater Sci Eng C Mater Biol Appl. of mechanical behavior of 3D bioprinted tissue-engineered
2020;114:111056. scaffolds using finite element method (FEM) analysis. Addit
doi: 10.1016/j.msec.2020.111056 Manuf. 2020;33(8):101181.
15. Shuai C, Yang W, Feng P, Peng S, Pan H. Accelerated doi: 10.1016/j.addma.2020.101181
degradation of HAP/PLLA bone scaffold by PGA blending 26. de Galarreta SR, Jeffers JRT, Ghouse S. A validated finite
facilitates bioactivity and osteoconductivity. Bioact Mater. element analysis procedure for porous structures. Mater
2021;6(2):490-502. Design. 2020;189:108546.
doi: 10.1016/j.bioactmat.2020.09.001 doi: 10.1016/j.matdes.2020.108546
Volume 10 Issue 6 (2024) 469 doi: 10.36922/ijb.4460

