Page 478 - IJB-10-6
P. 478

International Journal of Bioprinting                                 Stress prediction in 3D-printed scaffolds




            27.  Zhou J, Huang H, Wang LJ, et al. Stable mechanical fixation   using  optical  coherence  tomography  during  extrusion-
               in a bionic osteochondral scaffold considering bone growth.   based bioprinting. Addit Manuf. 2021;47:102251.
               Rare Metals. 2022;41(8):2711-2718.                 doi: 10.1016/j.addma.2021.102251
               doi: 10.1007/s12598-022-02000-6
                                                               33.  Yang S,Chen Q, Wang L, Xu M. In situ defect detection and
            28.  Mohol SS, Kumar M, Sharma V. PLA-based nature-inspired   feedback control  with  three-dimensional extrusion-based
               architecture for bone scaffolds: a finite element analysis.   bioprinter-associated  optical  coherence  tomography.  Int J
               Comput Biol Med. 2023;163:107163.                  Bioprint. 2023;9(1):624.
               doi: 10.1016/j.compbiomed.2023.107163              doi: 10.18063/ijb.v9i1.624
            29.  Scocozza F, Gravina GMD, Bari E, et al. Prediction of the   34.  Suo H,Chen Y, Liu J, Wang L, Xu M. 3D printing of biphasic
               mechanical response of a 3D (bio)printed hybrid scaffold   osteochondral scaffold with sintered hydroxyapatite and
               for improving bone tissue regeneration by structural   polycaprolactone. J Mater Sci. 2021;56:16623-16633.
               finite element analysis.  J Mech Behav Biomed Mater.      doi: 10.1007/s10853-021-06229-x
               2023;142:105822.                                35.  Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics
               doi: 10.1016/j.jmbbm.2023.105822
                                                                  of trabecular bone.  Annu Rev Biomed Eng. 2001;3(1):
            30.  Zhang B, Guo L, Chen H, Ventikos Y, Narayan RJ, Huang   307-333.
               J. Finite element evaluations of the mechanical properties      doi: 10.1146/annurev.bioeng.3.1.307
               of polycaprolactone/hydroxyapatite scaffolds by direct ink   36.  Collins MN, Ren G, Young K, et al. Scaffold fabrication
               writing: effects of pore geometry.  J Mech Behav Biomed   technologies  and  structure/function  properties  in  bone
               Mater. 2020;104:103665.                            tissue engineering. Adv Funct Mater. 2021;31(21):2010609.
               doi: 10.1016/j.jmbbm.2020.103665
                                                                  doi: 10.1002/adfm.202010609
            31.  Yunsheng D, Hui X, Jie W, et al. Sustained release silicon   37.  Lee JS, Cha HD, Shim JH, et al. Effect of pore architecture
               from  3D  bioprinting  scaffold  using  silk/gelatin  inks  to   and stacking direction on mechanical properties of
               promote osteogenesis. Int J Biol Macromol. 2023;234:123659.   solid freeform fabrication‐based scaffold for bone tissue
               doi: 10.1016/j.ijbiomac.2023.123659
                                                                  engineering.  J Biomed Mater Res A. 2012;100A(7):
            32.  Yang S, Wang L, Chen Q, Xu M. J. A. M. In situ process   1846-1853.
               monitoring and  automated  multi-parameter  evaluation      doi: 10.1002/jbm.a.34149










































            Volume 10 Issue 6 (2024)                       470                                doi: 10.36922/ijb.4460
   473   474   475   476   477   478   479   480   481   482   483