Page 106 - IJB-7-2
P. 106

3D Printed and Ion Controllable Release
               for Cancer Immunotherapy. Adv Biosyst, 2:1700114.  27.  Liu J,  Wei X,  Wang X,  et al., 2011, High-yield Synthesis
               https://doi.org/10.1002/adbi.201700114              of Ultrathin  Silica-Based  Nanosheets  and  their  Superior
           17.  Qian G, Wang X, Li X, et al., 2019, An Immuno-potentiating   Catalytic Activity in H O  Decomposition. Chem Commun,
                                                                                    2  2
               Vehicle  Made of Mesoporous Silica-zinc  Oxide Micro-  47:6135–7.
               rosettes with Enhanced Doxorubicin Loading for Combined   https://doi.org/10.1039/c1cc10280j
               Chemoimmunotherapy. Chem Commun, 55:961–4.      28.  Hallab NJ, Bundy J, O’Connor K, et al., 2001, Evaluation
               https://doi.org/10.1039/c8cc09044k                  of Metallic  and Polymeric  Biomaterial  Surface Energy
           18.  Wang X, Li X, Ito A, et al., 2017, Biodegradable Metal Ion-  and  Surface  Roughness Characteristics  for Directed  Cell
               doped Mesoporous Silica Nanospheres Stimulate Anticancer   Adhesion. Tissue Eng, 7:55–71.
               Th1 Immune Response  In Vivo.  ACS  Appl Mater Interf,   https://doi.org/10.1089/107632700300003297
               9:43538–44.                                     29.  Ranjbar HA, Nourany M, Mollavali  M,  et al., 2020,
               https://doi.org/10.1021/acsami.7b16118.s001         Stimuli-responsive Polyurethane Bionanocomposites of
           19.  Shuai C, Li  S, Peng S,  et  al., 2020, Hydrolytic  expansion   Poly (ethylene  glycol)/poly  (ε-caprolactone)  and  [poly
               induces corrosion propagation for increased fe biodegradation.   (ε-caprolactone)-grafted-]  Cellulose  Nanocrystals.  Polym
               Int J Bioprint, 6:248.                              Adv Technol, 32:5062.
               https://doi.org/10.18063/ijb.v6i1.248               https://doi.org/10.1002/pat.5062
           20.  Qian G,  Fan P, He F,  et al., 2019, Novel Strategy to   30.  Alnoor O, Laoui T, Ibrahim A, et al., 2020, Graphene Oxide-
               Accelerate Bone Regeneration of Calcium Phosphate Cement   based Membranes for Water Purification Applications: Effect
               by Incorporating 3D Plotted Poly (Lactic-co-glycolic Acid)   of Plasma Treatment on the Adhesion and Stability  of the
               Network and Bioactive  Wollastonite.  Adv  Healthc  Mater,   Synthesized Membranes. Membranes, 10:292.
               8:18013.                                            https://doi.org/10.3390/membranes10100292
               https://doi.org/10.1002/adhm.201801325          31.  Xin S, Gregory CA,  Alge  DL,  2020, Interplay  between
           21.  Qian G, Lu  T, Zhang J,  et al., 2020, Promoting Bone   Degradability  and Integrin Signaling on Mesenchymal
               Regeneration  of Calcium  Phosphate Cement  by  Addition   Stem Cell Function within Poly (Ethylene  Glycol) Based
               of PLGA Microspheres and Zinc Silicate  Via Synergistic   Microporous Annealed  Particle  Hydrogels.  Acta  Biomater,
               Effect of In-Situ Pore Generation, Bioactive ion Stimulation   101:227–36.
               and Macrophage Immunomodulation.  Appl Mater Today,   https://doi.org/10.1016/j.actbio.2019.11.009
               19:100615.                                      32.  Yang L, Jiang Z, Zhou L,  et al., 2017, Hydrophilic  Cell-
               https://doi.org/10.1016/j.apmt.2020.100615          derived Extracellular Matrix as a Niche to Promote Adhesion
           22.  Yuan S, Chua  CK, Zhou  K, 2019, 3D-printed  Mechanical   and Differentiation of Neural Progenitor Cells.  RSC Adv,
               Metamaterials  with  High Energy  Absorption.  Adv  Mater   7:45587–94.
               Technol, 4:1800419.                                 https://doi.org/10.1039/c7ra08273h
               https://doi.org/10.1002/admt.201800419          33.  Prochor P, Frossard L, Sajewicz E, 2020, Effect of the
           23.  Ng WL, Lee J M, Zhou M, et al., 2020, Vat Polymerization-  Material’s Stiffness on Stress-shielding in Osseointegrated
               based Bioprinting-Process, Materials,  Applications and   Implants for Bone-anchored Prostheses: A Numerical Analysis
               Regulatory Challenges. Biofabrication, 12:022001.   and Initial Benchmark Data. Acta Bioeng Biomech, 22:1–24.
               https://doi.org/10.1088/1758-5090/ab6034            https://doi.org/10.37190/abb-01543-2020-02
           24.  Ng WL, Chua CK, Shen YF, 2019, Print me an Organ! Why   34.  Shuai C, Wang B, Bin S, et al., 2020, TiO -induced In Situ
                                                                                                  2
               we are not there yet. Prog Polym Sci, 97:101145.    Reaction in Graphene Oxide-reinforced AZ61 Biocomposites
               https://doi.org/10.1016/j.progpolymsci.2019.101145  to Enhance the Interfacial Bonding. ACS Appl Mater Interf,
           25.  Alabort E, Barba D, Reed RC, 2019, Design of Metallic Bone   12:23464–73.
               by Additive Manufacturing. Script Mater, 164:110–14.  https://doi.org/10.1021/acsami.0c04020
               https://doi.org/10.1016/j.scriptamat.2019.01.022  35.  Shuai C, Liu G,  Yang  Y,  et al., 2020,  A Strawberry-like
           26.  Shuai C, Li Y, Yang W, et al., 2020, Graphene Oxide Induces   Ag-decorated  Barium  Titanate  Enhances  Piezoelectric  and
               Ester  Bonds Hydrolysis of Poly-l-lactic  Acid Scaffold  to   Antibacterial Activities of Polymer Scaffold. Nano Energy,
               Accelerate Degradation. Int J Bioprint, 6:249.      2020:104825.
               https://doi.org/10.18063/ijb.v6i1.249               https://doi.org/10.1016/j.nanoen.2020.104825

           102                         International Journal of Bioprinting (2021)–Volume 7, Issue 2
   101   102   103   104   105   106   107   108   109   110   111