Page 107 - IJB-7-2
P. 107

Qian, et al.
           36.  Murugan  R, Ramakrishna  S, 2005, Development  of   https://doi.org/10.1039/c9bm01181a
               Nanocomposites for Bone Grafting.  Compos Sci Technol,   43.  Kao YY,  Chen YC,  Cheng  TJ,  et  al.,  2012,  Zinc  Oxide
               65:2385–406.                                        Nanoparticles Interfere with Zinc Ion Homeostasis to Cause
           37.  Samuel SP, Li S, Mukherjee I,  et al., 2009, Mechanical   Cytotoxicity. Toxicol Sci, 125:462–72.
               Properties of Experimental Dental Composites Containing a   https://doi.org/10.1093/toxsci/kfr319
               Combination of Mesoporous and Nonporous Spherical Silica   44.  Jin Z,  Wu R, Shen J,  et  al., 2018, Nonstoichiometric
               as Fillers. Dent Mater, 25:296–301.                 Wollastonite  Bioceramic  Scaffolds  with Core-shell Pore
               https://doi.org/10.1016/j.dental.2008.07.012        Struts  and Adjustable Mechanical and Biodegradable
           38.  Shuai C, Li S, Yang W, et al., 2020, MnO  Catalysis of Oxygen   Properties. J Mech Behav Biomed Mater, 88:140–9.
                                           2
               Reduction to Accelerate the Degradation of Fe-C Composites   https://doi.org/10.1016/j.jmbbm.2018.08.018
               for Biomedical Applications. Corros Sci, 2020:108679.  45.  Zeng J, Xu L, Luo X, et al., 2021, A Novel Design of SiH/
               https://doi.org/10.1016/j.corsci.2020.108679        CeO  (111) van der Waals Type-II Heterojunction for Water
                                                                      2
           39.  Shuai C, He C, Qian G, et al., 2020, Mechanically Driving   Splitting. Phys Chem Chem Phys, 23:2812–8.
               Supersaturated  Fe-Mg Solid Solution for Bone Implant:   https://doi.org/10.1039/d0cp05238h
               Preparation, Solubility and Degradation. Compos Part B Eng,   46.  Yu Y, Liu K, Wen Z, et al., 2020, Double-edged Effects and
               2020:108564.                                        Mechanisms of Zn  Microenvironments on Osteogenic
                                                                                  2+
               https://doi.org/10.1016/j.compositesb.2020.108564   Activity of BMSCs: Osteogenic Differentiation or Apoptosis.
           40.  Zou Z,  Liu  W, Cao  L,  et  al., 2020,  Advances  in  the   RSC Adv, 10:14915–27.
               Occurrence and Biotherapy  of Osteoporosis.  Biochem Soc   https://doi.org/10.1039/d0ra01465f
               Trans, 48:1623–36.                              47.  Zou  A, Liang H, Jiao C,  et al., 2020, Fabrication  and
           41.  Heras C, Sanchez-Salcedo  S, Lozano  D,  et al., 2019,   Properties of CaSiO /Sr (PO )  Composite Scaffold Based on
                                                                                 3  3  4 2
               Osteostatin Potentiates the Bioactivity of Mesoporous Glass   Extrusion Deposition. Ceram Int, 47:4783–92.
               Scaffolds Containing Zn  Ions in Human Mesenchymal Stem   https://doi.org/10.1016/j.ceramint.2020.10.048
                                2+
               Cells. Acta Biomater, 89:359–371.               48.  Han P, Wu C, Xiao Y, 2013, The Effect of Silicate Ions on
               https://doi.org/10.1016/j.actbio.2019.03.033        Proliferation, Osteogenic Differentiation and Cell Signalling
           42.  Wang B, Yang M, Liu L, et al., 2019. Osteogenic Potential of   Pathways (WNT and SHH) of Bone Marrow Stromal Cells.
               Zn -passivated Carbon dots for bone Regeneration In Vivo.   Biomater Sci, 1:379–92.
                 2+
               Biomater Sci, 7:5414–23.                            https://doi.org/10.1039/c2bm00108j


































                                       International Journal of Bioprinting (2021)–Volume 7, Issue 2       103
   102   103   104   105   106   107   108   109   110   111   112