Page 84 - IJB-7-2
P. 84

A Scientometric Analysis
           References                                              Skeletal Muscle-like Constructs. Bioprinting, 21:e00125.
                                                                   https://doi.org/10.1016/j.bprint.2020.e00125
           1.   Rodríguez-Salvador M, Rio-Belver RM, Garechana-Anacabe G,   13.  Choudhury D,  Anand S, Naing MW, 2018,  The  Arrival
               2017, Scientometric and Patentometric Analyses to Determine   of  Commercial  Bioprinters-Towards  3D Bioprinting
               the Knowledge Landscape in Innovative  Technologies:  The   Revolution! Int J Bioprinting, 4:1–20.
               Case of 3D Bioprinting. PLoS One, 12:e0180375       https://doi.org/10.18063/IJB.v4i2.139
               https://doi.org/10.1371/journal.pone.0180375    14.  Wilson  WC, Boland  T, 2003, Cell  and Organ Printing  1:
           2.   Rodríguez-Salvador  M,  Villarreal-Garza  D, Álvarez MM,   Protein and Cell Printers. Anat Rec Part A Discov Mol Cell
               et al., 2019, Analysis of the Knowledge Landscape of Three-  Evol Biol, 272:491–6.
               dimensional Bioprinting in Latin America. Int J Bioprinting,      https://doi.org/10.1002/ar.a.10057
               5:16–25.                                        15.  Ringeisen BR, Kim H, Barron JA, et al., 2004, Laser Printing
               https://doi.org/10.18063/ijb.v5i2.3.240             of Pluripotent Embryonal Carcinoma Cells.  Tissue Eng,
           3.   Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why   10:483–91.
               We Are Not There Yet. Prog Polym Sci, 97:101145.     https://doi.org/10.1089/107632704323061843
               https://doi.org/10.1016/j.progpolymsci.2019.101145  16.  Nakamura  M, Kobayashi  A,  Takagi  F,  et al., 2005,
           4.   Ravnic  DJ,  Leberfinger  AN,  Koduru  SV,  et al., 2017,   Biocompatible  Inkjet  Printing  Technique  for Designed
               Transplantation of Bioprinted Tissues and Organs: Technical   Seeding of Individual Living Cells. Tissue Eng, 11:1658–66.
               and Clinical Challenges and Future Perspectives. Ann Surg,      https://doi.org/0.1089/ten.2005.11.1658
               266:48–58.                                      17.  Sun  W, Starly B, Daly AC,  et al., 2020,  The Bioprinting
               https://doi.org/10.1097/SLA.0000000000002141        Roadmap. Biofabrication, 12:022002.
           5.   Singh AV, Ansari MHD, Wang S, et al., 2019, The Adoption of      https://doi.org/10.1088/1758-5090/ab5158
               Three-dimensional Additive Manufacturing from Biomedical   18.  Lee S, Sani ES, Spencer  AR,  et al., 2020, Human-
               Material Design to 3D Organ Printing. Appl Sci, 9:811.  Recombinant-Elastin-Based  Bioinks  for  3D Bioprinting  of
               https://doi.org/10.3390/app9040811                  Vascularized Soft Tissues. Adv Mater, 32:1–10.
           6.   Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and      https://doi.org/10.1002/adma.202003915
               Organs. Nat Biotechnol, 32:773–85.              19.  Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely Printable
               https://doi.org/10.1038/nbt.2958                    and Biocompatible  Silk Fibroin Bioink  for Digital  Light
           7.   Fang Y, Eglen RM, 2017, Three-Dimensional Cell Cultures in   Processing 3D Printing. Nat Commun, 9:1620.
               Drug Discovery and Development. SLAS Discov, 22:456–72.     https://doi.org/10.1038/s41467-018-03759-y
               https://doi.org/10.1177/1087057117696795        20.  Zhang Z, Jin  Y,  Yin J,  et al., 2018, Evaluation  of Bioink
           8.   Kačarević  ŽP,  Rider  PM,  Alkildani  S,  et  al.,  2018,  An   Printability  for Bioprinting  Applications.  Appl  Phys  Rev,
               Introduction to 3D Bioprinting: Possibilities, Challenges and   5:041304.
               Future Aspects. Materials (Basel), 11:2199.         https://doi.org/10.1063/1.5053979
               https://doi.org/10.3390/ma11112199              21.  Ruberu K,  Senadeera M,  Rana S,  et al., 2021, Coupling
           9.   Mobaraki M, Ghaffari M, Yazdanpanah A, et al., 2020, Bioinks   Machine Learning with 3D Bioprinting to Fast  Track
               and Bioprinting: A Focused Review. Bioprinting, 18:e00080.  Optimisation  of Extrusion  Printing.  Appl  Mater  Today,
               https://doi.org/10.1016/j.bprint.2020.e00080        22:100914.
           10.  Ashammakhi  N,  Ahadian S, Xu C,  et al., 2019, Bioinks      https://doi.org/10.1016/j.apmt.2020.100914
               and Bioprinting  Technologies  to Make Heterogeneous and   22.  Gu  Y, Zhang L, Du X,  et  al., 2018 Reversible  Physical
               Biomimetic Tissue Constructs. Mater Today Bio, 1:100008.  Crosslinking Strategy with Optimal  Temperature  for
               https://doi.org/10.1016/j.mtbio.2019.100008         3D Bioprinting  of Human  Chondrocyte-laden  Gelatin
           11.  Mironov  V, Kasyanov  V, Markwald RR, 2011, Organ   Methacryloyl Bioink. J Biomater Appl, 33:609–18.
               Printing: From Bioprinter to Organ Biofabrication Line. Curr      https://doi.org/10.1177/0885328218805864
               Opin Biotechnol, 22:667–73.                     23.  Koo Y, Choi EJ, Lee J, et al., 2018, 3D Printed Cell-laden
               https://doi.org/10.1016/j.copbio.2011.02.006        Collagen and Hybrid Scaffolds for In Vivo Articular Cartilage
           12.  Bolívar-Monsalve EJ, Ceballos-González  CF, Borrayo-  Tissue Regeneration. J Ind Eng Chem, 66:343–55.
               Montaño KI, et al., 2021, Continuous Chaotic Bioprinting of      http://doi.org/10.1016/j.jiec.2018.05.049

           80                          International Journal of Bioprinting (2021)–Volume 7, Issue 2
   79   80   81   82   83   84   85   86   87   88   89