Page 88 - IJB-7-2
P. 88

A Scientometric Analysis
               Distributed Feedback Laser Using Optically Activated Silk   99.  Li J, Chen M, Fan X, et al., 2016, Recent  Advances in
               Bio-Ink. Adv Opt, 4:1738–43.                        Bioprinting  Techniques: Approaches, Applications  and
               https://doi.org/10.1002/adom.201600369              Future Prospects. J Transl Med, 14:1–15.
           88.  Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting:      https://doi.org/10.1186/s12967-016-1028-0
               From Benches to Translational Applications. Small, 15:1–47.  100.  Rocca M, Fragasso  A, Liu  W,  et al., 2018, Embedded
               https://doi.org/10.1002/smll.201805510              Multimaterial Extrusion Bioprinting. SLAS Technol, 23:154–63.
           89.  Gao G, Huang Y, Schilling AF, et al., 2018, Organ Bioprinting:      https://doi.org/10.1177/2472630317742071
               Are We There Yet? Adv Healthc Mater, 7:1–8.     101.  Trujillo-De Santiago G, Alvarez MM, Samandari M, et al.,
               https://doi.org/10.1002/adhm.201701018              2018, Chaotic  Printing:  Using Chaos to Fabricate  Densely
           90.  Badwaik R, 2019, 3D Printed Organs:  The Future of   Packed  Micro-and  Nanostructures  at  High Resolution  and
               Regenerative Medicine. J Clin Diagnostic Res, 13:13256.  Speed. Mater Horizons, 5:813–22.
               https://doi.org/10.7860/jcdr/2019/42546.13256       https://doi.org/10.1039/c8mh00344k
           91.  Paxton N, Smolan W, Böck T, et al., 2017, Proposal to Assess   102.  Chávez-Madero C, Díaz de León-Derby M, Samandari  M,
               Printability  of Bioinks for Extrusion-based Bioprinting   et al., 2020, Using Chaotic  Advection  for Facile  High-
               and Evaluation  of Rheological  Properties  Governing   throughput Fabrication  of Ordered Multilayer  Micro and
               Bioprintability. Biofabrication, 9:44107.           Nanostructures: Continuous Chaotic Printing. Biofabrication,
               https://doi.org/10.1088/1758-5090/aa8dd8            12:35023.
           92.  Ding H, Chang RC, 2018, Printability Study of Bioprinted      https://doi.org/10.1088/1758-5090/ab84cc
               Tubular Structures Using Liquid Hydrogel Precursors in a   103.  Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
               Support Bath. Appl Sci, 8:403.                      for 3D Bioprinting: an Overview. Biomater Sci, 6:915–46.
               https://doi.org/10.3390/app8030403                  https://doi.org/10.1039/c7bm00765e.Bioinks
           93.  Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating   104.  Campos DFD, Zhang S, Kreimendahl F, et al., 2020, Hand-
               Rheological Properties and Printability of Collagen Bioinks:   held Bioprinting for De Novo Vascular Formation Applicable
               The  Effects  of  Riboflavin  Photocrosslinking  and  pH.   to Dental Pulp Regeneration. Connect Tissue Res, 61:205–15.
               Biofabrication, 9:34102.                            https://doi.org/10.1080/03008207.2019.1640217
               https://doi.org/10.1088/1758-5090/aa780f        105.  Di Bella C, Duchi S, O’Connell CD,  et al., 2018,  In Situ
           94.  Bulanova EA, Koudan EV, Degosserie J,  et al., 2017,   Handheld  Three-dimensional  Bioprinting  for Cartilage
               Bioprinting  of  a  Functional  Vascularized  Mouse  Thyroid   Regeneration. J Tissue Eng Regen Med, 12:611–21.
               Gland Construct. Biofabrication, 9:34105.           https://doi.org/10.1002/term.2476
               https://doi.org/10.1088/1758-5090/aa7fdd        106.  Singh S, Choudhury D, Yu F, et al., 2020, In Situ Bioprinting
           95.  Kiyotake  EA, Douglas  AW,  Thomas  EE,  et  al., 2019,   Bioprinting  from Benchside to Bedside?  Acta Biomater,
               Development  and Quantitative  Characterization  of the   101:14–25.
               Precursor Rheology of Hyaluronic  Acid Hydrogels for      https://doi.org/10.1016/j.actbio.2019.08.045
               Bioprinting. Acta Biomater, 95:176–87.          107.  Albanna  M, Binder KW, Murphy SV,  et  al., 2019,  In Situ
               https://doi.org/10.1016/j.actbio.2019.01.041        Bioprinting of  Autologous Skin Cells  Accelerates  Wound
           96.  Zhang  B,  Luo Y,  Ma  L,  et  al.,  2018,  3D Bioprinting: An   Healing of Extensive Excisional Full-Thickness Wounds. Sci
               Emerging Technology Full of Opportunities and Challenges.   Rep, 9:1–15.
               Biodesign Manuf, 1:2–13.                            https://doi.org/10.1038/s41598-018-38366-w
               https://doi.org/10.1007/s42242-018-0004-3       108.  Russell CS, Mostafavi  A, Quint JP,  et al., 2020,  In Situ
           97.  Hölzl  K,  Lin  S,  Tytgat  L,  et al., 2016, Bioink Properties   Printing of Adhesive Hydrogel Scaffolds for the Treatment of
               Before, during and after  3D Bioprinting.  Biofabrication,   Skeletal Muscle Injuries. ACS Appl Bio Mater, 3:1568–79.
               8:32002.                                            https://doi.org/10.1021/acsabm.9b01176
               https://doi.org/10.1088/1758-5090/8/3/032002    109.  Bernal PN,  Delrot P, Loterie D,  et al.,  2019, Volumetric
           98.  Donderwinkel I, Van Hest JCM, Cameron NR, 2017, Bio-inks   Bioprinting of Complex Living-Tissue Constructs within
               for 3D bioprinting:  Recent advances and future prospects.   Seconds. Adv Mater, 31:1904209.
               Polym, 8(31):4451–71.                               https://doi.org/10.1002/adma.201904209
               https://doi.org/10.1039/c7py00826k              110.  Navarro J, Calderon  GA, Miller  JS,  et  al., editors,  2019,

           84                          International Journal of Bioprinting (2021)–Volume 7, Issue 2
   83   84   85   86   87   88   89   90   91   92   93