Page 88 - IJB-7-2
P. 88
A Scientometric Analysis
Distributed Feedback Laser Using Optically Activated Silk 99. Li J, Chen M, Fan X, et al., 2016, Recent Advances in
Bio-Ink. Adv Opt, 4:1738–43. Bioprinting Techniques: Approaches, Applications and
https://doi.org/10.1002/adom.201600369 Future Prospects. J Transl Med, 14:1–15.
88. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting: https://doi.org/10.1186/s12967-016-1028-0
From Benches to Translational Applications. Small, 15:1–47. 100. Rocca M, Fragasso A, Liu W, et al., 2018, Embedded
https://doi.org/10.1002/smll.201805510 Multimaterial Extrusion Bioprinting. SLAS Technol, 23:154–63.
89. Gao G, Huang Y, Schilling AF, et al., 2018, Organ Bioprinting: https://doi.org/10.1177/2472630317742071
Are We There Yet? Adv Healthc Mater, 7:1–8. 101. Trujillo-De Santiago G, Alvarez MM, Samandari M, et al.,
https://doi.org/10.1002/adhm.201701018 2018, Chaotic Printing: Using Chaos to Fabricate Densely
90. Badwaik R, 2019, 3D Printed Organs: The Future of Packed Micro-and Nanostructures at High Resolution and
Regenerative Medicine. J Clin Diagnostic Res, 13:13256. Speed. Mater Horizons, 5:813–22.
https://doi.org/10.7860/jcdr/2019/42546.13256 https://doi.org/10.1039/c8mh00344k
91. Paxton N, Smolan W, Böck T, et al., 2017, Proposal to Assess 102. Chávez-Madero C, Díaz de León-Derby M, Samandari M,
Printability of Bioinks for Extrusion-based Bioprinting et al., 2020, Using Chaotic Advection for Facile High-
and Evaluation of Rheological Properties Governing throughput Fabrication of Ordered Multilayer Micro and
Bioprintability. Biofabrication, 9:44107. Nanostructures: Continuous Chaotic Printing. Biofabrication,
https://doi.org/10.1088/1758-5090/aa8dd8 12:35023.
92. Ding H, Chang RC, 2018, Printability Study of Bioprinted https://doi.org/10.1088/1758-5090/ab84cc
Tubular Structures Using Liquid Hydrogel Precursors in a 103. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
Support Bath. Appl Sci, 8:403. for 3D Bioprinting: an Overview. Biomater Sci, 6:915–46.
https://doi.org/10.3390/app8030403 https://doi.org/10.1039/c7bm00765e.Bioinks
93. Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating 104. Campos DFD, Zhang S, Kreimendahl F, et al., 2020, Hand-
Rheological Properties and Printability of Collagen Bioinks: held Bioprinting for De Novo Vascular Formation Applicable
The Effects of Riboflavin Photocrosslinking and pH. to Dental Pulp Regeneration. Connect Tissue Res, 61:205–15.
Biofabrication, 9:34102. https://doi.org/10.1080/03008207.2019.1640217
https://doi.org/10.1088/1758-5090/aa780f 105. Di Bella C, Duchi S, O’Connell CD, et al., 2018, In Situ
94. Bulanova EA, Koudan EV, Degosserie J, et al., 2017, Handheld Three-dimensional Bioprinting for Cartilage
Bioprinting of a Functional Vascularized Mouse Thyroid Regeneration. J Tissue Eng Regen Med, 12:611–21.
Gland Construct. Biofabrication, 9:34105. https://doi.org/10.1002/term.2476
https://doi.org/10.1088/1758-5090/aa7fdd 106. Singh S, Choudhury D, Yu F, et al., 2020, In Situ Bioprinting
95. Kiyotake EA, Douglas AW, Thomas EE, et al., 2019, Bioprinting from Benchside to Bedside? Acta Biomater,
Development and Quantitative Characterization of the 101:14–25.
Precursor Rheology of Hyaluronic Acid Hydrogels for https://doi.org/10.1016/j.actbio.2019.08.045
Bioprinting. Acta Biomater, 95:176–87. 107. Albanna M, Binder KW, Murphy SV, et al., 2019, In Situ
https://doi.org/10.1016/j.actbio.2019.01.041 Bioprinting of Autologous Skin Cells Accelerates Wound
96. Zhang B, Luo Y, Ma L, et al., 2018, 3D Bioprinting: An Healing of Extensive Excisional Full-Thickness Wounds. Sci
Emerging Technology Full of Opportunities and Challenges. Rep, 9:1–15.
Biodesign Manuf, 1:2–13. https://doi.org/10.1038/s41598-018-38366-w
https://doi.org/10.1007/s42242-018-0004-3 108. Russell CS, Mostafavi A, Quint JP, et al., 2020, In Situ
97. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink Properties Printing of Adhesive Hydrogel Scaffolds for the Treatment of
Before, during and after 3D Bioprinting. Biofabrication, Skeletal Muscle Injuries. ACS Appl Bio Mater, 3:1568–79.
8:32002. https://doi.org/10.1021/acsabm.9b01176
https://doi.org/10.1088/1758-5090/8/3/032002 109. Bernal PN, Delrot P, Loterie D, et al., 2019, Volumetric
98. Donderwinkel I, Van Hest JCM, Cameron NR, 2017, Bio-inks Bioprinting of Complex Living-Tissue Constructs within
for 3D bioprinting: Recent advances and future prospects. Seconds. Adv Mater, 31:1904209.
Polym, 8(31):4451–71. https://doi.org/10.1002/adma.201904209
https://doi.org/10.1039/c7py00826k 110. Navarro J, Calderon GA, Miller JS, et al., editors, 2019,
84 International Journal of Bioprinting (2021)–Volume 7, Issue 2

