Page 93 - IJB-7-2
P. 93

González, et al.
           196.  Mokhtari  H, Kharaziha  M, Karimzadeh  F,  et  al., 2019,      https://doi.org/10.1177/2472630318776594
               An Injectable  Mechanically  Robust Hydrogel of Kappa-  206.  Zhu K, Shin SR, van Kempen  T,  et al., 2017, Gold
               carrageenan-dopamine  Functionalized Graphene Oxide for   Nanocomposite Bioink for Printing 3D Cardiac Constructs.
               Promoting Cell Growth. Carbohydr Polym, 214:234–49.  Adv Funct Mater, 27:1605352.
               https://doi.org/10.1016/j.carbpol.2019.03.030       https://doi.org/10.1002/adfm.201605352
           197.  Aldrich A, Kuss MA, Duan B, et al., 2019, 3D Bioprinted   207.  Zhai X, Ruan C, Ma  Y,  et al., 2018, 3D-Bioprinted
               Scaffolds  Containing  Viable  Macrophages  and  Antibiotics   Osteoblast-Laden  Nanocomposite  Hydrogel  Constructs
               Promote Clearance  of Staphylococcus  aureus Craniotomy-  with  Induced  Microenvironments  Promote  Cell  Viability,
               Associated  Biofilm  Infection.  ACS  Appl Mater Interfaces,   Differentiation, and Osteogenesis both In Vitro and In Vivo.
               11:12298–307.                                       Adv Sci, 5:1700550.
               https://doi.org/10.1021/acsami.9b00264              https://doi.org/10.1002/advs.201700550
           198.  Noh I, Kim N, Tran HN, et al., 2019, 3D Printable Hyaluronic   208.  Lee D, Lee D, Won Y, et al., 2016, Insertion of Vertically
               Acid-based Hydrogel for its Potential Application as a Bioink   Aligned Nanowires into Living Cells by Inkjet Printing of
               in Tissue Engineering. Biomater Res, 23:3.          Cells. Small, 12:1446–57.
               https://doi.org/10.1186/s40824-018-0152-8           https://doi.org/10.1002/smll.201502510
           199.  Arya N,  Forget  A,  Sarem M,  et al., 2019, RGDSP   209.  Hashmi MU, Khan F, Khalid N,  et al., 2017, Hydrogels
               Functionalized Carboxylated Agarose as Extrudable Carriers   Incorporated with Silver Nanocolloids Prepared from
               for Chondrocyte Delivery. Mater Sci Eng C, 99:103–11.  Antioxidant Rich Aerva javanica as Disruptive Agents against
               https://doi.org/10.1016/j.msec.2019.01.080          Burn Wound  Infections.  Colloids Surfaces  A Physicochem
           200.  Ooi HW, Mota  C, ten  Cate  AT,  et  al.,  2018, Thiol-Ene   Eng Asp, 529:475–86.
               Alginate  Hydrogels  as  Versatile  Bioinks  for  Bioprinting.      https://doi.org/10.1016/j.colsurfa.2017.06.036
               Biomacromolecules, 19:3390–400.                 210.  Maharjan B, Kumar D, Awasthi GP, et al., 2019, Synthesis
               https://doi.org/10.1021/acs.biomac.8b00696          and Characterization of Gold/Silica Hybrid Nanoparticles
           201.  Kérourédan O, Bourget JM, Rémy M,  et al., 2019,   Incorporated Gelatin Methacrylate Conductive Hydrogels for
               Micropatterning of Endothelial Cells to Create a Capillary-  H9C2 Cardiac Cell Compatibility Study. Compos Part B Eng,
               like  Network  with  Defined  Architecture  by  Laser-assisted   177:107415.
               Bioprinting. J Mater Sci Mater Med, 30:28.          https://doi.org/10.1016/j.compositesb.2019.107415
               https://doi.org/10.1007/s10856-019-6230-1       211.  Hasnidawani JN, Azlina HN, Norita H, et al., 2016, Synthesis
           202.  Miri AK, Nieto  D, Iglesias  L,  et  al.,  2018,  Microfluidics-  of ZnO Nanostructures Using Sol-Gel Method.  Procedia
               Enabled  Multimaterial  Maskless  Stereolithographic  Chem, 19:211–6.
               Bioprinting. Adv Mater, 30:1800242.                 https://doi.org/10.1016/j.proche.2016.03.095
               https://doi.org/10.1002/adma.201800242          212.  Salavati-Niasari  M,  Soofivand  F,  Sobhani-Nasab A,  et al.,
           203.  Jang J, Park HJ, Kim SW, et al., 2017, 3D Printed Complex   2017, Facile  Synthesis and Characterization  of CdTiO
                                                                                                              3
               Tissue Construct Using  Stem Cell-laden  Decellularized   Nanoparticles by Pechini Sol-gel Method. J Mater Sci Mater
               Extracellular Matrix Bioinks for Cardiac Repair. Biomaterials,   Electron, 28:14965–73.
               112:264–74.                                         https://doi.org/10.1007/s10854-017-7369-5
               https://doi.org/10.1016/j.biomaterials.2016.10.026  213.  Rahali K, Ben Messaoud G, Kahn CJF, et al., 2017, Synthesis
           204.  Shin S,  Kwak  H,  Hyun  J,  2018, Melanin Nanoparticle-  and Characterization  of Nanofunctionalized  Gelatin
               Incorporated  Silk Fibroin  Hydrogels for the  Enhancement   Methacrylate Hydrogels. Int J Mol Sci, 18:2675.
               of Printing Resolution in 3D-Projection Stereolithography of      https://doi.org/10.3390/ijms18122675
               Poly(ethylene glycol)-Tetraacrylate Bio-ink. ACS Appl Mater   214.  Kusior A, Kollbek K, Kowalski K, et al., 2016, Sn and Cu
               Interfaces, 10:23573–82.                            Oxide Nanoparticles  Deposited  on  TiO   Nanoflower  3D
                                                                                                 2
               https://doi.org/10.1021/acsami.8b05963              Substrates by Inert Gas Condensation Technique. Appl Surf
           205.  Laternser S, Keller  H, Leupin O,  et al., 2018,  A Novel   Sci, 380:193–202.
               Microplate 3D Bioprinting Platform for the Engineering of      https://doi.org/10.1016/j.apsusc.2016.01.204
               Muscle  and Tendon Tissues.  SLAS Technol Transl Life Sci   215.  Iqbal J,  Abbasi BA,  Ahmad R,  et al., 2020, Biogenic
               Innov, 23:599–613.                                  Synthesis of Green and Cost Effective Iron Nanoparticles and

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 2        89
   88   89   90   91   92   93   94   95   96   97   98