Page 93 - IJB-7-2
P. 93
González, et al.
196. Mokhtari H, Kharaziha M, Karimzadeh F, et al., 2019, https://doi.org/10.1177/2472630318776594
An Injectable Mechanically Robust Hydrogel of Kappa- 206. Zhu K, Shin SR, van Kempen T, et al., 2017, Gold
carrageenan-dopamine Functionalized Graphene Oxide for Nanocomposite Bioink for Printing 3D Cardiac Constructs.
Promoting Cell Growth. Carbohydr Polym, 214:234–49. Adv Funct Mater, 27:1605352.
https://doi.org/10.1016/j.carbpol.2019.03.030 https://doi.org/10.1002/adfm.201605352
197. Aldrich A, Kuss MA, Duan B, et al., 2019, 3D Bioprinted 207. Zhai X, Ruan C, Ma Y, et al., 2018, 3D-Bioprinted
Scaffolds Containing Viable Macrophages and Antibiotics Osteoblast-Laden Nanocomposite Hydrogel Constructs
Promote Clearance of Staphylococcus aureus Craniotomy- with Induced Microenvironments Promote Cell Viability,
Associated Biofilm Infection. ACS Appl Mater Interfaces, Differentiation, and Osteogenesis both In Vitro and In Vivo.
11:12298–307. Adv Sci, 5:1700550.
https://doi.org/10.1021/acsami.9b00264 https://doi.org/10.1002/advs.201700550
198. Noh I, Kim N, Tran HN, et al., 2019, 3D Printable Hyaluronic 208. Lee D, Lee D, Won Y, et al., 2016, Insertion of Vertically
Acid-based Hydrogel for its Potential Application as a Bioink Aligned Nanowires into Living Cells by Inkjet Printing of
in Tissue Engineering. Biomater Res, 23:3. Cells. Small, 12:1446–57.
https://doi.org/10.1186/s40824-018-0152-8 https://doi.org/10.1002/smll.201502510
199. Arya N, Forget A, Sarem M, et al., 2019, RGDSP 209. Hashmi MU, Khan F, Khalid N, et al., 2017, Hydrogels
Functionalized Carboxylated Agarose as Extrudable Carriers Incorporated with Silver Nanocolloids Prepared from
for Chondrocyte Delivery. Mater Sci Eng C, 99:103–11. Antioxidant Rich Aerva javanica as Disruptive Agents against
https://doi.org/10.1016/j.msec.2019.01.080 Burn Wound Infections. Colloids Surfaces A Physicochem
200. Ooi HW, Mota C, ten Cate AT, et al., 2018, Thiol-Ene Eng Asp, 529:475–86.
Alginate Hydrogels as Versatile Bioinks for Bioprinting. https://doi.org/10.1016/j.colsurfa.2017.06.036
Biomacromolecules, 19:3390–400. 210. Maharjan B, Kumar D, Awasthi GP, et al., 2019, Synthesis
https://doi.org/10.1021/acs.biomac.8b00696 and Characterization of Gold/Silica Hybrid Nanoparticles
201. Kérourédan O, Bourget JM, Rémy M, et al., 2019, Incorporated Gelatin Methacrylate Conductive Hydrogels for
Micropatterning of Endothelial Cells to Create a Capillary- H9C2 Cardiac Cell Compatibility Study. Compos Part B Eng,
like Network with Defined Architecture by Laser-assisted 177:107415.
Bioprinting. J Mater Sci Mater Med, 30:28. https://doi.org/10.1016/j.compositesb.2019.107415
https://doi.org/10.1007/s10856-019-6230-1 211. Hasnidawani JN, Azlina HN, Norita H, et al., 2016, Synthesis
202. Miri AK, Nieto D, Iglesias L, et al., 2018, Microfluidics- of ZnO Nanostructures Using Sol-Gel Method. Procedia
Enabled Multimaterial Maskless Stereolithographic Chem, 19:211–6.
Bioprinting. Adv Mater, 30:1800242. https://doi.org/10.1016/j.proche.2016.03.095
https://doi.org/10.1002/adma.201800242 212. Salavati-Niasari M, Soofivand F, Sobhani-Nasab A, et al.,
203. Jang J, Park HJ, Kim SW, et al., 2017, 3D Printed Complex 2017, Facile Synthesis and Characterization of CdTiO
3
Tissue Construct Using Stem Cell-laden Decellularized Nanoparticles by Pechini Sol-gel Method. J Mater Sci Mater
Extracellular Matrix Bioinks for Cardiac Repair. Biomaterials, Electron, 28:14965–73.
112:264–74. https://doi.org/10.1007/s10854-017-7369-5
https://doi.org/10.1016/j.biomaterials.2016.10.026 213. Rahali K, Ben Messaoud G, Kahn CJF, et al., 2017, Synthesis
204. Shin S, Kwak H, Hyun J, 2018, Melanin Nanoparticle- and Characterization of Nanofunctionalized Gelatin
Incorporated Silk Fibroin Hydrogels for the Enhancement Methacrylate Hydrogels. Int J Mol Sci, 18:2675.
of Printing Resolution in 3D-Projection Stereolithography of https://doi.org/10.3390/ijms18122675
Poly(ethylene glycol)-Tetraacrylate Bio-ink. ACS Appl Mater 214. Kusior A, Kollbek K, Kowalski K, et al., 2016, Sn and Cu
Interfaces, 10:23573–82. Oxide Nanoparticles Deposited on TiO Nanoflower 3D
2
https://doi.org/10.1021/acsami.8b05963 Substrates by Inert Gas Condensation Technique. Appl Surf
205. Laternser S, Keller H, Leupin O, et al., 2018, A Novel Sci, 380:193–202.
Microplate 3D Bioprinting Platform for the Engineering of https://doi.org/10.1016/j.apsusc.2016.01.204
Muscle and Tendon Tissues. SLAS Technol Transl Life Sci 215. Iqbal J, Abbasi BA, Ahmad R, et al., 2020, Biogenic
Innov, 23:599–613. Synthesis of Green and Cost Effective Iron Nanoparticles and
International Journal of Bioprinting (2021)–Volume 7, Issue 2 89

