Page 90 - IJB-7-2
P. 90

A Scientometric Analysis
               3D Constructs for Dermal  Tissue Engineering.  Mater   Living Materials. ACS Synth Biol, 8:1564–7.
               Horizons, 5:1100–11.                                https://doi.org/10.1021/acssynbio.9b00192
               https://doi.org/10.1039/c8mh00525g              142.  Hynes  WF, Chacón  J, Segrè D,  et  al., 2018, Bioprinting
           131.  Gholami P, Ahmadi-Pajouh MA, Abolftahi N, et al., 2018,   Microbial Communities to Examine Interspecies Interactions
               Segmentation  and Measurement of Chronic  Wounds for   in Time and Space. Biomed Phys Eng Express, 4:055010.
               Bioprinting. IEEE J Biomed Health, 22:1269–77.      https://doi.org/10.1088/2057-1976/aad544
               https://doi.org/10.1109/JBHI.2017.2743526       143.  Lode  A, Krujatz  F, Brüggemeier S,  et al., 2015, Green
           132.  Chen Y, Wang Y, Yang Q, et al., 2018, A Novel Thixotropic   Bioprinting:  Fabrication  of Photosynthetic  Algae-laden
               Magnesium  Phosphate-based  Bioink  with  Excellent   Hydrogel  Scaffolds  for  Biotechnological  and  Medical
               Printability for Application in 3D Printing. J Mater Chem B,   Applications. Eng Life Sci, 15:177–83.
               6:4502–13.                                          https://doi.org/10.1002/elsc.201400205
               https://doi.org/10.1039/C8TB01196F              144.  Maharjan  S,  Alva  J, Cámara C,  et  al., 2021, Symbiotic
           133.  Zhu K, Chen N, Liu X,  et al., 2019,  A General  Strategy   Photosynthetic  Oxygenation  within  3D-Bioprinted
               for Extrusion Bioprinting  of Bio-Macromolecular  Bioinks   Vascularized Tissues. Matter, 4:217–40.
               through  Alginate-Templated  Dual-Stage  Crosslinking.      https://doi.org/10.1016/j.matt.2020.10.022
               Macromol Biosci, 18:1800127.                    145.  Cui X, Dean D, Ruggeri ZM,  et al., 2010, Cell Damage
               https://doi.org/10.1002/mabi.201800127              Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary
           134.  Cao X, Ashfaq R, Cheng F, et al., 2019, A Tumor-on-a-Chip   Cells. Biotechnol Bioeng, 106:963–9.
               System with Bioprinted Blood and Lymphatic Vessel Pair.      https://doi.org/10.1002/bit.22762
               Adv Funct Mater, 29:1807173.                    146.  Ozler SB, Bakirci  E, Kucukgul C,  et  al.,  2017, Three-
               https://doi.org/10.1002/adfm.201807173              dimensional Direct Cell Bioprinting for Tissue Engineering.
           135.  Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G,   J Biomed Mater Res Part B Appl Biomater, 105:2530–44.
               2021, Advances in 3D Bioprinting for the Biofabrication of      https://doi.org/10.1002/jbm.b.33768
               Tumor Models. Bioprinting, 21:e00120.           147.  Hoffman AS, 2012, Hydrogels for Biomedical Applications.
               https://doi.org/10.1016/j.bprint.2020.e00120        Adv Drug Deliv Rev, 64:18–23.
           136.  Lucey BP, Nelson-Rees  WA, Hutchins GM,  et al., 2009,      https://doi.org/10.1016/j.addr.2012.09.010
               Historical Perspective Henrietta Lacks, HeLa Cells, and Cell   148.  Chiew CSC, Poh PE, Pasbakhsh P,  et  al., 2014,
               Culture Contamination. Arch Pathol Lab Med, 133:1463–7.  Physicochemical  Characterization  of Halloysite/Alginate
               https://doi.org/10.1043/1543-2165-133.9.1463        Bionanocomposite Hydrogel. Appl Clay Sci, 101:444–54.
           137.  Saygili  E, Dogan-Gurbuz  AA,  Yesil-Celiktas  O,  et  al.,      https://doi.org/10.1016/j.clay.2014.09.007
               2020, 3D Bioprinting: A Powerful Tool to Leverage Tissue   149.  Xiong R, Zhang  Z, Chai  W,  et  al., 2015, Freeform  Drop-
               Engineering and Microbial Systems. Bioprinting, 18:e00071.  on-demand  Laser  Printing  of  3D  Alginate  and  Cellular
               https://doi.org/10.1016/j.bprint.2019.e00071        Constructs. Biofabrication, 7:45011.
           138.  Schmieden  DT,  Vázquez  SJB, Sangüesa  H,  et  al.,  2018,      https://doi.org/10.1088/1758-5090/7/4/045011
               Printing of Patterned, Engineered  E. coli  Biofilms  with  a   150.  Freeman FE, Kelly DJ,  2017,  Tuning  Alginate Bioink
               Low-Cost 3D Printer. ACS Synth Biol, 7:1328–37.     Stiffness  and  Composition  for  Controlled  Growth  Factor
               https://doi.org/10.1021/acssynbio.7b00424           Delivery and to Spatially Direct MSC Fate within Bioprinted
           139.  Ning E, Turnbull G, Clarke J, et al., 2019, 3D Bioprinting of   Tissues. Sci Rep, 7:17042.
               Mature Bacterial Biofilms for Antimicrobial Resistance Drug      https://doi.org/10.1038/s41598-017-17286-1
               Testing. Biofabrication, 11:045018.             151.  Jeon O, Lee YB, Hinton TJ, et al., 2019, Cryopreserved Cell-
               https://doi.org/10.1088/1758-5090/ab37a0            laden Alginate Microgel Bioink for 3D Bioprinting of Living
           140.  Huang Y,  Xia A, Yang  G,  et al., 2018, Bioprinting  Living   Tissues. Mater Today Chem, 12:61–70.
               Biofilms through Optogenetic Manipulation. ACS Synth Biol,      https://doi.org/10.1016/j.mtchem.2018.11.009
               7:1195–200.                                     152.  Hiller T, Berg J, Elomaa L, et al., 2018, Generation of a 3D
               https://doi.org/10.1021/acssynbio.8b00003           Liver Model Comprising Human Extracellular Matrix in an
           141.  Balasubramanian  S, Aubin-Tam ME, Meyer AS, 2019, 3D   Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for
               Printing  for  the  Fabrication  of  Biofilm-Based  Functional   Infection and Transduction Studies. Int J Mol Sci, 19:1–17.

           86                          International Journal of Bioprinting (2021)–Volume 7, Issue 2
   85   86   87   88   89   90   91   92   93   94   95