Page 87 - IJB-7-2
P. 87

González, et al.
               2020:199307.                                        based Bioprinting-Process, Materials,  Applications and
               https://doi.org/10.1101/2020.07.12.199307           Regulatory Challenges. Biofabrication, 12:22001.
           67.  Kim  WJ,  Lee  H, Lee  JU,  et  al,  2020,  Efficient  Myotube      https://doi.org/10.1088/1758-5090/ab6034
               Formation in 3D Bioprinted Tissue Construct by Biochemical   78.  Liu  W, Zhang  YS, Heinrich MA,  et  al., 2017, Rapid
               and Topographical Cues. Biomaterials, 230:119632.   Continuous Multimaterial Extrusion Bioprinting. Adv Mater,
               https://doi.org/10.1016/j.biomaterials.2019.119632  29:1–8.
           68.  Organizacion  Nacional  de  Transplantes,  2019, El Registro      https://doi.org/10.1002/adma.201604630
               Mundial  de  Trasplantes  cifra  en 139.024 los  Trasplantes   79.  Liu  W, Zhong Z, Hu N,  et al., 2018, Coaxial Extrusion
               Realizados en el Mundo en el Último año, con un Aumento del   Bioprinting  of  3D  Microfibrous  Constructs  with  Cell-
               2,3%, viewed October 1, 2020. Available from: http://www.  favorable  Gelatin  Methacryloyl  Microenvironments.
               ont.es/prensa/NotasDePrensa/28%2008%202019%20%20    Biofabrication, 10:024102.
               REGISTRO%20MUNDIAL%20DE%20TRASPLANTES.              https://doi.org/10.1088/1758-5090/aa9d44
               pdf. [Last accessed on 2020 Oct 01].            80.  Yeo M, Ha J, Lee H, et al., 2016, Fabrication of hASCs-Laden
           69.  Organ Procurement  and  Transplantation  Network, 2020,   Structures Using Extrusion-based Cell Printing Supplemented
               National  Data, viewed October 5, 2020.  Available  from:   with an Electric Field. Acta Biomater, 38:33–43.
               https://www.optn.transplant.hrsa.gov/data/view-data-reports/     http://doi.org/10.1016/j.actbio.2016.04.017
               national-data/#.                                81.  Campos DFD, Philip MA, Gürzing S,  et al., 2019,
           70.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and   Synchronized Dual Bioprinting of Bioinks and Biomaterial
               Challenges of Translational 3D Bioprinting. Nat Biomed Eng,   Inks as a  Translational  Strategy for Cartilage  Tissue
               4:370–80.                                           Engineering. 3D Print Addit Manuf. 6:63–71.
               https://doi.org/10.1038/s41551-019-0471-7           https://doi.org/10.1089/3dp.2018.0123
           71.  Mirdamadi  E,  Tashman JW, Shiwarski DJ,  et al., 2020,   82.  Betsch M, Cristian C, Lin YY, et al., 2018, Incorporating 4D
               FRESH 3D Bioprinting  a Full-Size Model of the Human   into Bioprinting: Real-Time Magnetically Directed Collagen
               Heart. ACS Biomater Sci Eng, 6:6453–9.              Fiber  Alignment  for Generating  Complex  Multilayered
               https://doi.org/10.1021/acsbiomaterials.0c01133     Tissues. Adv Healthc Mater, 7:1800894.
           72.  Turunen  S, Kaisto  S, Skovorodkin  I,  et  al., 2018, 3D      https://doi.org/10.1002/adhm.201800894
               Bioprinting of the Kidney Hype or Hope? AIMS Cell Tissue   83.  Köpf M, Campos DFD, Blaeser A, et al., 2016, A Tailored
               Eng, 2:119–62.                                      Three-dimensionally  Printable  Agarose-collagen  Blend
               https://doi.org/10.3934/celltissue.2018.3.119       Allows Encapsulation, Spreading, and Attachment of Human
           73.  Ali M, Kumar  A Pr.,  Yoo JJ,  et al., 2019,  A Photo-  Umbilical  Artery Smooth  Muscle Cells.  Biofabrication,
               Crosslinkable  Kidney  ECM-Derived  Bioink  Accelerates   8:25011.
               Renal Tissue Formation. Adv Healthc Mater, 8:1800992.     https://doi.org/10.1088/1758-5090/8/2/025011
               http://doi.org/10.1002/adhm.201800992           84.  Tetsuka H, Shin SR, 2020, Materials and Technical Innovations
           74.  Irvine SA, Agrawal A, Lee BH, et al., 2015, Printing Cell-  in 3D Printing in Biomedical Applications. J Mater Chem B,
               laden Gelatin Constructs by Free-form Fabrication and   8:2930–50.
               Enzymatic  Protein Crosslinking.  Biomed Microdevices,      https://doi.org/10.1039/d0tb00034e
               17:16.                                          85.  Hong J, Shin Y, Kim S,  et al., 2019, Complex  Tuning of
               https://doi.org/10.1007/s10544-014-9915-8           Physical  Properties  of  Hyperbranched  Polyglycerol-Based
           75.  Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future   Bioink for Microfabrication  of Cell-Laden  Hydrogels.  Adv
               Perspectives in Extrusion-based  Bioprinting.  Biomaterials,   Funct Mater, 29:1808750.
               76:321–43.                                          https://doi.org/10.1002/adfm.201808750
               https://doi.org/10.1016/j.biomaterials.2015.10.076  86.  Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable
           76.  Gudapati  H, Dey M, Ozbolat I, 2016,  A Comprehensive   Gelatin  and Hyaluronic  Acid for Stereolithographic  3D
               Review on Droplet-based Bioprinting: Past, Present and   Bioprinting of Tissue-engineered Cartilage. J Biomed Mater
               Future. Biomaterials, 102:20–42.                    Res Part B Appl Biomater, 107:2649–57.
               https://doi.org/10.1016/j.biomaterials.2016.06.012     https://doi.org/10.1002/jbm.b.34354
           77.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization-  87.  Jung H, Min K, Jeon H, et al., 2016, Physically Transient

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 2        83
   82   83   84   85   86   87   88   89   90   91   92