Page 94 - IJB-7-2
P. 94
A Scientometric Analysis
Evaluation of their Potential Biomedical Properties. J Mol 227. Echalier C, Levato R, Mateos-Timoneda MA, et al., 2017,
Struct, 1199:126979. Modular Bioink for 3D Printing of Biocompatible Hydrogels:
https://doi.org/10.1016/j.molstruc.2019.126979 Sol-gel Polymerization of Hybrid Peptides and Polymers.
216. Nunes R, Baião A, Monteiro D, et al., 2020, Zein RSC Adv, 7:12231–35.
Nanoparticles as Low-cost, Safe, and Effective Carriers to https://doi.org/10.1039/C6RA28540F
Improve the Oral Bioavailability of Resveratrol. Drug Deliv 228. Gao G, Zhang XF, Hubbell K, C et al., 2017, NR2F2 Regulates
Transl Res, 10:826–37. Chondrogenesis of Human Mesenchymal Stem Cells in
https://doi.org/10.1007/s13346-020-00738-z Bioprinted Cartilage. Biotechnol Bioeng, 114:208–16.
217. Peak CW, Singh KA, Adlouni M, et al., 2019, Printing https://doi.org/10.1002/bit.26042
Therapeutic Proteins in 3D using Nanoengineered Bioink 229. Daly AC, Cunniffe GM, Sathy BN, et al., 2016, 3D Bioprinting
to Control and Direct Cell Migration. Adv Healthc Mater, of Developmentally Inspired Templates for Whole Bone
8:1801553. Organ Engineering. Adv Healthc Mater, 5:2353–62.
https://doi.org/10.1002/adhm.201801553 https://doi.org/10.1002/adhm.201600182
218. Chimene D, Peak CW, Gentry JL, et al., 2018, Nanoengineered 230. Lee DY, Lee H, Kim Y, et al., 2016, Phage as Versatile
Ionic-Covalent Entanglement (NICE) Bioinks for 3D Nanoink for Printing 3-D Cell-laden Scaffolds. Acta
Bioprinting. ACS Appl Mater Interfaces, 10:9957–68. Biomater, 29:112–24.
https://doi.org/10.1021/acsami.7b19808 https://doi.org/10.1016/j.actbio.2015.10.004
219. Wilson SA, Cross LM, Peak CW, et al., 2017, Shear- 231. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D Printing
Thinning and Thermo-Reversible Nanoengineered Inks for of Layered Brain-like Structures Using Peptide Modified
3D Bioprinting. ACS Appl Mater Interfaces, 9:43449–58. Gellan Gum Substrates. Biomaterials, 67:264–73.
https://doi.org/10.1021/acsami.7b13602 https://doi.org/10.1016/j.biomaterials.2015.07.022
220. Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development 232. Schacht K, Jüngst T, Schweinlin M, et al., 2015, Biofabrication
of a Clay Based Bioink for 3D Cell Printing for Skeletal of Cell-Loaded 3D Spider Silk Constructs. Angew Chemie Int
Application. Biofabrication, 9:34103. Ed, 54:2816–20.
https://doi.org/10.1088/1758-5090/aa7e96 https://doi.org/10.1002/anie.201409846
221. Olsen TR, Casco M, Herbst A, et al., 2016, Longitudinal 233. Jia J, Richards DJ, Pollard S, et al., 2014, Engineering Alginate
Stretching for Maturation of Vascular Tissues Using Magnetic as Bioink for Bioprinting. Acta Biomater, 10:4323–31.
Forces. Bioengineering, 3:29. https://doi.org/10.1016/j.actbio.2014.06.034
222. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based 234. Chung JHY, Naficy S, Yue Z, et al., 2013, Bio-ink Properties
Nanocellulose and Bioactive Glass Modified Gelatin-alginate and Printability for Extrusion Printing Living Cells. Biomater
Bioinks for 3D Bioprinting of Bone Cells. Biofabrication, Sci, 1:763–73.
11:35010. https://doi.org/10.1039/C3BM00012E
https://doi.org/10.1088/1758-5090/ab0692 235. Poon YF, Cao Y, Liu Y, et al., 2010, Hydrogels Based
223. Reakasame S, Trapani D, Detsch R, et al., 2018, Cell Laden on Dual Curable Chitosan-graft-Polyethylene Glycol-
Alginate-keratin Based Composite Microcapsules Containing graft-Methacrylate: Application to Layer-by-Layer Cell
Bioactive Glass for Tissue Engineering Applications. J Mater Encapsulation. ACS Appl Mater Interfaces, 2:2012–25.
Sci Mater Med, 29:185. https://doi.org/10.1021/am1002876
https://doi.org/10.1007/s10856-018-6195-5 236. Ji S, Almeida E, Guvendiren M, 2019, 3D Bioprinting
224. Trampe E, Koren K, Akkineni AR, et al., 2018, Functionalized of Complex Channels within Cell-laden Hydrogels. Acta
Bioink with Optical Sensor Nanoparticles for O2 Imaging in Biomater, 95:214–24.
3D-Bioprinted Constructs. Adv Funct Mater, 28:1804411. https://doi.org/10.1016/j.actbio.2019.02.038
https://doi.org/10.1002/adfm.201804411 237. Park J, Lee SJ, Lee H, et al., 2018, Three Dimensional
225. Allig S, Mayer M, Thielemann C. Workflow for Bioprinting Cell Printing with Sulfated Alginate for Improved Bone
of Cell-laden Bioink. Lek Tech, 48:46–51. Morphogenetic Protein-2 Delivery and Osteogenesis in Bone
226. DeSimone E, Schacht K, Pellert A, et al., 2017, Recombinant Tissue Engineering. Carbohydr Polym, 196:217–24.
Spider Silk-Based Bioinks. Biofabrication, 9:44104. https://doi.org/10.1016/j.carbpol.2018.05.048
https://doi.org/10.1088/1758-5090/aa90db 238. Luo Y, Luo G, Gelinsky M, et al., 2017, 3D Bioprinting
90 International Journal of Bioprinting (2021)–Volume 7, Issue 2

