Page 94 - IJB-7-2
P. 94

A Scientometric Analysis
               Evaluation  of their Potential  Biomedical  Properties.  J Mol   227.  Echalier C, Levato R, Mateos-Timoneda MA, et al., 2017,
               Struct, 1199:126979.                                Modular Bioink for 3D Printing of Biocompatible Hydrogels:
               https://doi.org/10.1016/j.molstruc.2019.126979      Sol-gel Polymerization  of Hybrid Peptides and Polymers.
           216.  Nunes R, Baião  A, Monteiro D,  et al., 2020, Zein   RSC Adv, 7:12231–35.
               Nanoparticles  as  Low-cost,  Safe,  and  Effective  Carriers  to      https://doi.org/10.1039/C6RA28540F
               Improve the Oral Bioavailability of Resveratrol. Drug Deliv   228.  Gao G, Zhang XF, Hubbell K, C et al., 2017, NR2F2 Regulates
               Transl Res, 10:826–37.                              Chondrogenesis of Human Mesenchymal Stem Cells in
               https://doi.org/10.1007/s13346-020-00738-z          Bioprinted Cartilage. Biotechnol Bioeng, 114:208–16.
           217.  Peak CW, Singh KA,  Adlouni M,  et al., 2019, Printing      https://doi.org/10.1002/bit.26042
               Therapeutic  Proteins in 3D  using Nanoengineered Bioink   229.  Daly AC, Cunniffe GM, Sathy BN, et al., 2016, 3D Bioprinting
               to Control and Direct  Cell  Migration.  Adv Healthc  Mater,   of Developmentally  Inspired  Templates for  Whole Bone
               8:1801553.                                          Organ Engineering. Adv Healthc Mater, 5:2353–62.
               https://doi.org/10.1002/adhm.201801553              https://doi.org/10.1002/adhm.201600182
           218.  Chimene D, Peak CW, Gentry JL, et al., 2018, Nanoengineered   230.  Lee DY,  Lee  H, Kim  Y,  et  al., 2016, Phage  as  Versatile
               Ionic-Covalent  Entanglement  (NICE) Bioinks for 3D   Nanoink  for  Printing  3-D  Cell-laden  Scaffolds.  Acta
               Bioprinting. ACS Appl Mater Interfaces, 10:9957–68.  Biomater, 29:112–24.
               https://doi.org/10.1021/acsami.7b19808              https://doi.org/10.1016/j.actbio.2015.10.004
           219.  Wilson SA, Cross LM, Peak CW,  et  al., 2017,  Shear-  231.  Lozano R, Stevens L, Thompson BC, et al., 2015, 3D Printing
               Thinning  and  Thermo-Reversible  Nanoengineered  Inks for   of  Layered  Brain-like  Structures  Using  Peptide  Modified
               3D Bioprinting. ACS Appl Mater Interfaces, 9:43449–58.  Gellan Gum Substrates. Biomaterials, 67:264–73.
               https://doi.org/10.1021/acsami.7b13602              https://doi.org/10.1016/j.biomaterials.2015.07.022
           220.  Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development   232.  Schacht K, Jüngst T, Schweinlin M, et al., 2015, Biofabrication
               of a Clay Based Bioink for 3D Cell Printing for Skeletal   of Cell-Loaded 3D Spider Silk Constructs. Angew Chemie Int
               Application. Biofabrication, 9:34103.               Ed, 54:2816–20.
               https://doi.org/10.1088/1758-5090/aa7e96            https://doi.org/10.1002/anie.201409846
           221.  Olsen  TR, Casco M, Herbst A,  et  al., 2016, Longitudinal   233.  Jia J, Richards DJ, Pollard S, et al., 2014, Engineering Alginate
               Stretching for Maturation of Vascular Tissues Using Magnetic   as Bioink for Bioprinting. Acta Biomater, 10:4323–31.
               Forces. Bioengineering, 3:29.                       https://doi.org/10.1016/j.actbio.2014.06.034
           222.  Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based   234.  Chung JHY, Naficy S, Yue Z, et al., 2013, Bio-ink Properties
               Nanocellulose and Bioactive Glass Modified Gelatin-alginate   and Printability for Extrusion Printing Living Cells. Biomater
               Bioinks for 3D  Bioprinting of Bone Cells.  Biofabrication,   Sci, 1:763–73.
               11:35010.                                           https://doi.org/10.1039/C3BM00012E
               https://doi.org/10.1088/1758-5090/ab0692        235.  Poon YF,  Cao Y,  Liu Y,  et al., 2010, Hydrogels Based
           223.  Reakasame S, Trapani D, Detsch R, et al., 2018, Cell Laden   on Dual  Curable  Chitosan-graft-Polyethylene  Glycol-
               Alginate-keratin Based Composite Microcapsules Containing   graft-Methacrylate:  Application  to Layer-by-Layer  Cell
               Bioactive Glass for Tissue Engineering Applications. J Mater   Encapsulation. ACS Appl Mater Interfaces, 2:2012–25.
               Sci Mater Med, 29:185.                              https://doi.org/10.1021/am1002876
               https://doi.org/10.1007/s10856-018-6195-5       236.  Ji S,  Almeida  E, Guvendiren M, 2019, 3D Bioprinting
           224.  Trampe E, Koren K, Akkineni AR, et al., 2018, Functionalized   of Complex Channels within Cell-laden  Hydrogels.  Acta
               Bioink with Optical Sensor Nanoparticles for O2 Imaging in   Biomater, 95:214–24.
               3D-Bioprinted Constructs. Adv Funct Mater, 28:1804411.     https://doi.org/10.1016/j.actbio.2019.02.038
               https://doi.org/10.1002/adfm.201804411          237.  Park J, Lee SJ, Lee H,  et al., 2018,  Three Dimensional
           225.  Allig S, Mayer M, Thielemann C. Workflow for Bioprinting   Cell  Printing  with Sulfated  Alginate  for Improved  Bone
               of Cell-laden Bioink. Lek Tech, 48:46–51.           Morphogenetic Protein-2 Delivery and Osteogenesis in Bone
           226.  DeSimone E, Schacht K, Pellert A, et al., 2017, Recombinant   Tissue Engineering. Carbohydr Polym, 196:217–24.
               Spider Silk-Based Bioinks. Biofabrication, 9:44104.     https://doi.org/10.1016/j.carbpol.2018.05.048
               https://doi.org/10.1088/1758-5090/aa90db        238.  Luo  Y, Luo G, Gelinsky M,  et  al., 2017, 3D Bioprinting

           90                          International Journal of Bioprinting (2021)–Volume 7, Issue 2
   89   90   91   92   93   94   95   96   97   98   99