Page 39 - IJB-7-3
P. 39

Ren, et al
               https://doi.org/10.1016/j.stem.2016.04.003      79.  Han  Y,  Yang  L,  Duan  X,  et  al.,  2020,  Identification  of
           67.  Zhao Y, Yao R, Ouyang L, et al., 2014, Three-Dimensional   Candidate  COVID-19  Therapeutics  using  hPSC-Derived
               Printing of Hela Cells for Cervical Tumor Model In Vitro.   Lung Organoids, bioRxiv.
               Biofabrication, 6:035001.                       80.  Grigoryan  B,  Paulsen  SJ,  Corbett  DC,  et  al.,  2019,
               https://doi.org/10.1088/1758-5082/6/3/035001        Biomedicine  Multivascular  Networks  and  Functional
           68.  Cao X, Ashfaq R, Cheng F, et al., 2019, A Tumor-On-A-Chip   Intravascular  Topologies  within  Biocompatible  Hydrogels.
               System  with  Bioprinted  Blood  and  Lymphatic Vessel  Pair.   Science, 364:458–64.
               Adv Funct Mater, 29:1807173.                    81.  Vichas  A,  Zallen  JA,  2011,  Translating  Cell  Polarity  into
               https://doi.org/10.1002/adfm.201807173              Tissue Elongation. Semin Cell Dev Biol, 22:858–64.
           69.  Yi  HG,  Jeong  YH,  Kim  Y,  et al.,  A  Bioprinted  Human-     https://doi.org/10.1016/j.semcdb.2011.09.013
               Glioblastoma-On-A-Chip  for  the  Identification  of  Patient-  82.  Davis GE, Cleaver OB, 2014, Outside in: Inversion of Cell
               Specific Responses to Chemoradiotherapy. Nat Biomed Eng,   Polarity  Controls  Epithelial  Lumen  Formation.  Dev Cell,
               3:509–19.                                           31:140–2.
               https://doi.org/10.1038/s41551-019-0363-x           https://doi.org/10.1016/j.devcel.2014.10.011
           70.  Bonneh-Barkay  D,  Wiley  CA,  2009,  Brain  Extracellular   83.  Reid  JA,  Mollica  PM,  Bruno  RD,  et al.,  2018,  Consistent
               Matrix in Neurodegeneration. Brain Pathol, 19:573–85.  and  Reproducible  Cultures  of  Large-Scale  3D  Mammary
               https://doi.org/10.1111/j.1750-3639.2008.00195.x    Epithelial  Structures  using  an  Accessible  Bioprinting
           71.  Stiles J, Jernigan TL, 2010, The Basics of Brain Development.   Platform. Breast Cancer Res, 20:122.
               Neuropsychol Rev, 20:327–48.                        https://doi.org/10.1186/s13058-018-1045-4
           72.  Trevino AE, Sinnott-Armstrong N, Andersen J, et al., 2020,   84.  Kim E, Choi S, Kang B, et al., 2020, Creation of Bladder
               Chromatin  Accessibility  Dynamics  in  a  Model  of  Human   Assembloids  Mimicking  Tissue  Regeneration  and  Cancer.
               Forebrain Development. Science, 367:eaay1645.       Nature, 588:664–9.
               https://doi.org/10.1126/science.aay1645             https://doi.org/10.1038/s41586-020-3034-x
           73.  Li  YC,  Jodat  YA,  Samanipour  R,  et  al.,  2021,  Toward  a   85.  Fujii  M,  Matano  M,  Toshimitsu  K,  et al.,  2018,  Human
               Neurospheroid  Niche  Model:  Optimizing  Embedded  3D   Intestinal  Organoids  Maintain  Self-Renewal  Capacity  and
               Bioprinting for Fabrication of Neurospheroid Brain-Like Co-  Cellular Diversity in Niche-Inspired Culture Condition. Cell
               Culture Constructs. Biofabrication, 13:015014.      Stem Cell, 23:787–93.
               https://doi.org/10.1088/1758-5090/abc1be            https://doi.org/10.1016/j.stem.2018.11.016
           74.  Willerth SM, 2018, Bioprinting Neural Tissues using Stem   86.  Hu  H,  Gehart  H,  Artegiani  B,  et al.,  2018,  Long-Term
               Cells as a Tool for Screening Drug Targets for Alzheimer’s   Expansion of Functional Mouse and Human Hepatocytes as
               Disease. J 3D Print Med, 2:1–4.                     3D Organoids. Cell, 175:1591–606.e19.
           75.  Skylar-Scott M, Huang J, Lu A, et al., 2020, An Orthogonal      https://doi.org/10.1016/j.cell.2018.11.013
               Differentiation Platform for Genomically Programming Stem   87.  Sato  T,  Vries  RG,  Snippert  HJ,  et  al.,  2009,  Single  Lgr5
               Cells, Organoids, and Bioprinted Tissues, bioRxiv.  Stem Cells Build Crypt-Villus Structures In Vitro Without a
               https://doi.org/10.1101/2020.07.11.198671           Mesenchymal Niche. Nature, 459:262–5.
           76.  Rothenbücher  T,  Gürbüz  H,  Emnéus  J,  et al.,  2021,  Next      https://doi.org/10.1038/nature07935
               Generation  Human  Brain  Models:  Engineered  Flat  Brain   88.  Sato  T,  Stange  DE,  Ferrante  M,  et  al.,  2011,  Long-Term
               Organoids Featuring Gyrification. Biofabrication, 13:011001.  Expansion  of  Epithelial  Organoids  From  Human  Colon,
               https://doi.org/10.1088/1758-5090/abc95e            Adenoma,  Adenocarcinoma,  and  Barrett’s  Epithelium.
           77.  Abigail I, Stephen S, Connon CJ, 2018, 3D Bioprinting of a   Gastroenterology, 141:1762–72.
               Corneal Stroma Equivalent. Exp Eye Res, 173:188–93.     https://doi.org/10.1053/j.gastro.2011.07.050
               https://doi.org/10.1016/j.exer.2018.05.010      89.  Wilson  WC,  Boland  T,  2003,  Cell  and  Organ  Printing  1:
           78.  Kim J, Shim IK, Hwang DG, et al., 2019, 3D Cell Printing of   Protein and Cell Printers. Anat Rec A Discov Mol Cell Evol
               Islet-Laden  Pancreatic  Tissue-Derived  Extracellular  Matrix   Biol, 272A:491–6.
               Bioink  Constructs  for  Enhancing  Pancreatic  Functions.      https://doi.org/10.1002/ar.a.10057
               J Mater Chem B. 7:4592.                         90.  Rawal P, Tripathi DM, Ramakrishna S, et al., Prospects for
               https://doi.org/10.1039/c9tb90097g                  3D Bioprinting of Organoids. Biodes Manuf, 4:627–40.

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3        35
   34   35   36   37   38   39   40   41   42   43   44