Page 39 - IJB-7-3
P. 39
Ren, et al
https://doi.org/10.1016/j.stem.2016.04.003 79. Han Y, Yang L, Duan X, et al., 2020, Identification of
67. Zhao Y, Yao R, Ouyang L, et al., 2014, Three-Dimensional Candidate COVID-19 Therapeutics using hPSC-Derived
Printing of Hela Cells for Cervical Tumor Model In Vitro. Lung Organoids, bioRxiv.
Biofabrication, 6:035001. 80. Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019,
https://doi.org/10.1088/1758-5082/6/3/035001 Biomedicine Multivascular Networks and Functional
68. Cao X, Ashfaq R, Cheng F, et al., 2019, A Tumor-On-A-Chip Intravascular Topologies within Biocompatible Hydrogels.
System with Bioprinted Blood and Lymphatic Vessel Pair. Science, 364:458–64.
Adv Funct Mater, 29:1807173. 81. Vichas A, Zallen JA, 2011, Translating Cell Polarity into
https://doi.org/10.1002/adfm.201807173 Tissue Elongation. Semin Cell Dev Biol, 22:858–64.
69. Yi HG, Jeong YH, Kim Y, et al., A Bioprinted Human- https://doi.org/10.1016/j.semcdb.2011.09.013
Glioblastoma-On-A-Chip for the Identification of Patient- 82. Davis GE, Cleaver OB, 2014, Outside in: Inversion of Cell
Specific Responses to Chemoradiotherapy. Nat Biomed Eng, Polarity Controls Epithelial Lumen Formation. Dev Cell,
3:509–19. 31:140–2.
https://doi.org/10.1038/s41551-019-0363-x https://doi.org/10.1016/j.devcel.2014.10.011
70. Bonneh-Barkay D, Wiley CA, 2009, Brain Extracellular 83. Reid JA, Mollica PM, Bruno RD, et al., 2018, Consistent
Matrix in Neurodegeneration. Brain Pathol, 19:573–85. and Reproducible Cultures of Large-Scale 3D Mammary
https://doi.org/10.1111/j.1750-3639.2008.00195.x Epithelial Structures using an Accessible Bioprinting
71. Stiles J, Jernigan TL, 2010, The Basics of Brain Development. Platform. Breast Cancer Res, 20:122.
Neuropsychol Rev, 20:327–48. https://doi.org/10.1186/s13058-018-1045-4
72. Trevino AE, Sinnott-Armstrong N, Andersen J, et al., 2020, 84. Kim E, Choi S, Kang B, et al., 2020, Creation of Bladder
Chromatin Accessibility Dynamics in a Model of Human Assembloids Mimicking Tissue Regeneration and Cancer.
Forebrain Development. Science, 367:eaay1645. Nature, 588:664–9.
https://doi.org/10.1126/science.aay1645 https://doi.org/10.1038/s41586-020-3034-x
73. Li YC, Jodat YA, Samanipour R, et al., 2021, Toward a 85. Fujii M, Matano M, Toshimitsu K, et al., 2018, Human
Neurospheroid Niche Model: Optimizing Embedded 3D Intestinal Organoids Maintain Self-Renewal Capacity and
Bioprinting for Fabrication of Neurospheroid Brain-Like Co- Cellular Diversity in Niche-Inspired Culture Condition. Cell
Culture Constructs. Biofabrication, 13:015014. Stem Cell, 23:787–93.
https://doi.org/10.1088/1758-5090/abc1be https://doi.org/10.1016/j.stem.2018.11.016
74. Willerth SM, 2018, Bioprinting Neural Tissues using Stem 86. Hu H, Gehart H, Artegiani B, et al., 2018, Long-Term
Cells as a Tool for Screening Drug Targets for Alzheimer’s Expansion of Functional Mouse and Human Hepatocytes as
Disease. J 3D Print Med, 2:1–4. 3D Organoids. Cell, 175:1591–606.e19.
75. Skylar-Scott M, Huang J, Lu A, et al., 2020, An Orthogonal https://doi.org/10.1016/j.cell.2018.11.013
Differentiation Platform for Genomically Programming Stem 87. Sato T, Vries RG, Snippert HJ, et al., 2009, Single Lgr5
Cells, Organoids, and Bioprinted Tissues, bioRxiv. Stem Cells Build Crypt-Villus Structures In Vitro Without a
https://doi.org/10.1101/2020.07.11.198671 Mesenchymal Niche. Nature, 459:262–5.
76. Rothenbücher T, Gürbüz H, Emnéus J, et al., 2021, Next https://doi.org/10.1038/nature07935
Generation Human Brain Models: Engineered Flat Brain 88. Sato T, Stange DE, Ferrante M, et al., 2011, Long-Term
Organoids Featuring Gyrification. Biofabrication, 13:011001. Expansion of Epithelial Organoids From Human Colon,
https://doi.org/10.1088/1758-5090/abc95e Adenoma, Adenocarcinoma, and Barrett’s Epithelium.
77. Abigail I, Stephen S, Connon CJ, 2018, 3D Bioprinting of a Gastroenterology, 141:1762–72.
Corneal Stroma Equivalent. Exp Eye Res, 173:188–93. https://doi.org/10.1053/j.gastro.2011.07.050
https://doi.org/10.1016/j.exer.2018.05.010 89. Wilson WC, Boland T, 2003, Cell and Organ Printing 1:
78. Kim J, Shim IK, Hwang DG, et al., 2019, 3D Cell Printing of Protein and Cell Printers. Anat Rec A Discov Mol Cell Evol
Islet-Laden Pancreatic Tissue-Derived Extracellular Matrix Biol, 272A:491–6.
Bioink Constructs for Enhancing Pancreatic Functions. https://doi.org/10.1002/ar.a.10057
J Mater Chem B. 7:4592. 90. Rawal P, Tripathi DM, Ramakrishna S, et al., Prospects for
https://doi.org/10.1039/c9tb90097g 3D Bioprinting of Organoids. Biodes Manuf, 4:627–40.
International Journal of Bioprinting (2021)–Volume 7, Issue 3 35

