Page 37 - IJB-7-3
P. 37
Ren, et al
https://doi.org/10.1002/bit.23295 Dimensional Multicellular Arrays for Studies of Cell-Cell and
18. Li J, Chen M, Fan X, et al., 2016, Recent Advances in Cell-Environment Interactions. Tissue Eng Part C Methods,
Bioprinting Techniques: Approaches, Applications and 17:973–82.
Future Prospects. J Transl Med, 14:271. https://doi.org/10.1089/ten.tec.2011.0185
https://doi.org/10.1186/s12967-016-1028-0 31. Flores-Torres S, Peza-Chavez O, Kuasne H, et al., 2021,
19. Bertassoni LE, Cardoso JC, Manoharan V, et al., 2014, Alginate-gelatin-Matrigel hydrogels enable the development
Direct-Write Bioprinting of Cell-Laden Methacrylated and multigenerational passaging of patient-derived 3D
Gelatin Hydrogels. Biofabrication, 6:024105. bioprinted cancer spheroid models. Biofabrication, 13:025001
https://doi.org/10.1088/1758-5082/6/2/024105 https://doi.org/10.1088/1758-5090/abdb87
20. Brassard JA, Nikolaev M, Hübscher T, et al., 2020, 32. Tirziu D, Giordano FJ, Simons M, 2010, Cell Communications
Recapitulating Macro-Scale Tissue Self-Organization in the Heart. Circulation, 122:928–37.
Through Organoid Bioprinting. Nat Mater, 20:22–9. https://doi.org/10.1161/circulationaha.108.847731
https://doi.org/10.1038/s41563-020-00803-5 33. Bergmann O, Zdunek S, Felker A, et al., 2015, Dynamics
21. Daly AC, Prendergast ME, Hughes AJ, et al., 2021, of Cell Generation and Turnover in the Human Heart. Cell,
Bioprinting for the Biologist. Cell, 184:18–32. 161:1566–75.
https://doi.org/10.1016/j.cell.2020.12.002 34. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D Bioprinting
22. Cui H, Nowicki M, Fisher JP, et al., 2016, 3D Bioprinting for of Collagen to Rebuild Components of the Human Heart.
Organ Regeneration. Adv Healthc Mater, 6:1601118. Science, 365:482–7.
https://doi.org/10.1002/adhm.201601118 35. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
23. Quan H, Zhang T, Xu H, et al., 2020, Photo-Curing 3D Dimensional Printing of Complex Biological Structures by
Printing Technique and Its Challenges. Bioact Mater, 5:110–5. Freeform Reversible Embedding of Suspended Hydrogels.
24. Creff J, Courson R, Mangeat T, et al., 2019. Fabrication of 3D Sci Adv, 1:e1500758.
Scaffolds Reproducing Intestinal Epithelium Topography by https://doi.org/10.1126/sciadv.1500758
High-Resolution 3D Stereolithography, In: 45 International 36. Noor N, Shapira A, Edri R, et al., 2019, 3D Printing of
th
Conference on Micro and Nano Engineering (MNE 2019). Personalized Thick and Perfusable Cardiac Patches and
https://doi.org/10.1016/j.biomaterials.2019.119404 Hearts. Adv Sci, 6:1900344.
25. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free https://doi.org/10.1002/advs.201900344
vascular tissue engineering using bioprinting. Biomaterials, 37. Lee J, Sutani A, Kaneko R, et al., 2020, In Vitro Generation
30:5910–7. of Functional Murine Heart Organoids via FGF4 and
https://doi.org/10.1016/j.biomaterials.2009.06.034 Extracellular Matrix. Nat Commun, 11:4283.
26. Nair LS, Laurencin CT, 2007, Biodegradable Polymers as https://doi.org/10.1038/s41467-020-18031-5
Biomaterials. Prog Polym Sci, 32:762–98. 38. Drakhlis, L., Biswanath, S., Farr, CM. et al. Human heart-
27. Zhang H, Huang H, Hao G, et al., 2021, 3D Printing Hydrogel forming organoids recapitulate early heart and foregut
Scaffolds with Nanohydroxyapatite Gradient to Effectively development. Nat Biotechnol 39:737–746 (2021).
Repair Osteochondral Defects in Rats. Adv Funct Mater, 39. Kupfer ME, Lin WH, Ravikumar V, et al., 2020, In Situ
31:2006697. Expansion, Differentiation, and Electromechanical Coupling
https://doi.org/10.1002/adfm.202006697 of Human Cardiac Muscle in a 3D Bioprinted, Chambered
28. Skardal A, Devarasetty M, Kang HW, et al., 2016, Bioprinting Organoid. Circ Res, 127:207–24.
Cellularized Constructs Using a Tissue-specific Hydrogel https://doi.org/10.1161/circresaha.119.316155
Bioink. J Vis Exp, 2016:e53606. 40. Nishinakamura R, 2019, Human Kidney Organoids: Progress
https://doi.org/10.3791/53606 and Remaining Challenges. Nat Rev Nephrol, 15:613–24.
29. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D https://doi.org/10.1038/s41581-019-0176-x
Bioprinting Human Chondrocytes with Nanocellulose- 41. Taguchi A, Kaku Y, Ohmori T, et al., 2014, Redefining the
Alginate Bioink for Cartilage Tissue Engineering In Vivo Origin of Metanephric Nephron Progenitors Enables
Applications. Biomacromolecules, 16:1489–96. Generation of Complex Kidney Structures from Pluripotent
https://doi.org/10.1021/acs.biomac.5b00188 Stem Cells. Cell Stem Cell, 14:53–67.
30. Gruene M, Pflaum M, Hess C, et al., Laser Printing of Three- https://doi.org/10.1016/j.stem.2013.11.010
International Journal of Bioprinting (2021)–Volume 7, Issue 3 33

