Page 37 - IJB-7-3
P. 37

Ren, et al
               https://doi.org/10.1002/bit.23295                   Dimensional Multicellular Arrays for Studies of Cell-Cell and
           18.  Li  J,  Chen  M,  Fan  X,  et al.,  2016,  Recent  Advances  in   Cell-Environment Interactions. Tissue Eng Part C Methods,
               Bioprinting  Techniques:  Approaches,  Applications  and   17:973–82.
               Future Prospects. J Transl Med, 14:271.             https://doi.org/10.1089/ten.tec.2011.0185
               https://doi.org/10.1186/s12967-016-1028-0       31.  Flores-Torres  S,  Peza-Chavez  O,  Kuasne  H,  et al.,  2021,
           19.  Bertassoni  LE,  Cardoso  JC,  Manoharan  V,  et al.,  2014,   Alginate-gelatin-Matrigel hydrogels enable the development
               Direct-Write  Bioprinting  of  Cell-Laden  Methacrylated   and  multigenerational  passaging  of  patient-derived  3D
               Gelatin Hydrogels. Biofabrication, 6:024105.        bioprinted cancer spheroid models. Biofabrication, 13:025001
               https://doi.org/10.1088/1758-5082/6/2/024105        https://doi.org/10.1088/1758-5090/abdb87
           20.  Brassard  JA,  Nikolaev  M,  Hübscher  T,  et  al.,  2020,   32.  Tirziu D, Giordano FJ, Simons M, 2010, Cell Communications
               Recapitulating   Macro-Scale  Tissue   Self-Organization   in the Heart. Circulation, 122:928–37.
               Through Organoid Bioprinting. Nat Mater, 20:22–9.     https://doi.org/10.1161/circulationaha.108.847731
               https://doi.org/10.1038/s41563-020-00803-5      33.  Bergmann  O,  Zdunek  S,  Felker A,  et al.,  2015,  Dynamics
           21.  Daly  AC,  Prendergast  ME,  Hughes  AJ,  et al.,  2021,   of Cell Generation and Turnover in the Human Heart. Cell,
               Bioprinting for the Biologist. Cell, 184:18–32.     161:1566–75.
               https://doi.org/10.1016/j.cell.2020.12.002      34.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D Bioprinting
           22.  Cui H, Nowicki M, Fisher JP, et al., 2016, 3D Bioprinting for   of  Collagen  to  Rebuild  Components  of  the  Human  Heart.
               Organ Regeneration. Adv Healthc Mater, 6:1601118.   Science, 365:482–7.
               https://doi.org/10.1002/adhm.201601118          35.  Hinton  TJ,  Jallerat  Q,  Palchesko  RN,  et al.,  2015,  Three-
           23.  Quan  H,  Zhang  T,  Xu  H,  et al.,  2020,  Photo-Curing  3D   Dimensional Printing of Complex Biological Structures by
               Printing Technique and Its Challenges. Bioact Mater, 5:110–5.  Freeform  Reversible  Embedding  of  Suspended  Hydrogels.
           24.  Creff J, Courson R, Mangeat T, et al., 2019. Fabrication of 3D   Sci Adv, 1:e1500758.
               Scaffolds Reproducing Intestinal Epithelium Topography by      https://doi.org/10.1126/sciadv.1500758
               High-Resolution 3D Stereolithography, In: 45  International   36.  Noor  N,  Shapira  A,  Edri  R,  et al.,  2019,  3D  Printing  of
                                                th
               Conference on Micro and Nano Engineering (MNE 2019).  Personalized  Thick  and  Perfusable  Cardiac  Patches  and
               https://doi.org/10.1016/j.biomaterials.2019.119404  Hearts. Adv Sci, 6:1900344.
           25.  Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free      https://doi.org/10.1002/advs.201900344
               vascular tissue engineering using bioprinting. Biomaterials,   37.  Lee J, Sutani A, Kaneko R, et al., 2020, In Vitro Generation
               30:5910–7.                                          of  Functional  Murine  Heart  Organoids  via  FGF4  and
               https://doi.org/10.1016/j.biomaterials.2009.06.034  Extracellular Matrix. Nat Commun, 11:4283.
           26.  Nair  LS,  Laurencin  CT,  2007,  Biodegradable  Polymers  as      https://doi.org/10.1038/s41467-020-18031-5
               Biomaterials. Prog Polym Sci, 32:762–98.        38.  Drakhlis, L., Biswanath, S., Farr, CM. et al. Human heart-
           27.  Zhang H, Huang H, Hao G, et al., 2021, 3D Printing Hydrogel   forming organoids recapitulate  early heart and foregut
               Scaffolds  with  Nanohydroxyapatite  Gradient  to  Effectively   development. Nat Biotechnol 39:737–746 (2021).
               Repair  Osteochondral  Defects  in  Rats.  Adv  Funct  Mater,   39.  Kupfer  ME,  Lin  WH,  Ravikumar  V,  et  al.,  2020,  In Situ
               31:2006697.                                         Expansion, Differentiation, and Electromechanical Coupling
               https://doi.org/10.1002/adfm.202006697              of Human Cardiac Muscle in a 3D Bioprinted, Chambered
           28.  Skardal A, Devarasetty M, Kang HW, et al., 2016, Bioprinting   Organoid. Circ Res, 127:207–24.
               Cellularized  Constructs  Using  a  Tissue-specific  Hydrogel      https://doi.org/10.1161/circresaha.119.316155
               Bioink. J Vis Exp, 2016:e53606.                 40.  Nishinakamura R, 2019, Human Kidney Organoids: Progress
               https://doi.org/10.3791/53606                       and Remaining Challenges. Nat Rev Nephrol, 15:613–24.
           29.  Markstedt  K,  Mantas  A,  Tournier  I,  et al.,  2015,  3D      https://doi.org/10.1038/s41581-019-0176-x
               Bioprinting  Human  Chondrocytes  with  Nanocellulose-  41.  Taguchi A, Kaku Y, Ohmori T, et al., 2014, Redefining the
               Alginate  Bioink  for  Cartilage  Tissue  Engineering   In Vivo Origin of Metanephric Nephron Progenitors Enables
               Applications. Biomacromolecules, 16:1489–96.        Generation of Complex Kidney Structures from Pluripotent
               https://doi.org/10.1021/acs.biomac.5b00188          Stem Cells. Cell Stem Cell, 14:53–67.
           30.  Gruene M, Pflaum M, Hess C, et al., Laser Printing of Three-     https://doi.org/10.1016/j.stem.2013.11.010

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3        33
   32   33   34   35   36   37   38   39   40   41   42