Page 57 - IJB-7-3
P. 57
Mei, et al.
80. Genova T, Roato I, Carossa M, et al., 2020, Advances on https://doi.org/10.1007/s10439-010-9977-6
Bone Substitutes Through 3D Bioprinting. Int J Mol Sci, 90. Jiang L, Wang Y, Liu Z, et al., 2019, Three-dimensional Printing
21:7012. and Injectable Conductive Hydrogels for Tissue Engineering
https://doi.org/10.3390/ijms21197012 Application. Tissue Eng Part B Rev, 25:398–411.
81. Qiao H., Tang TJ, 2018, Engineering 3D Approaches to https://doi.org/10.1089/ten.teb.2019.0100
Model the Dynamic Microenvironments of Cancer Bone 91. Wei K, Zhu M, Sun Y, et al., 2016, Robust Biopolymeric
Metastasis. Bone Res, 6:1–12. Supramolecular “Host Guest Macromer” Hydrogels
https://doi.org/10.1038/s41413-018-0008-9 Reinforced by In Situ Formed Multivalent Nanoclusters for
82. Ozbolat IT, Peng W, Ozbolat VJ, 2016, Application Areas of Cartilage Regeneration. Macromolecules, 49:866–75.
3D Bioprinting. Drug Discov Today, 21:1257–71. https://doi.org/10.1021/acs.macromol.5b02527.s001
https://doi.org/10.1016/j.drudis.2016.04.006 92. Salzlechner C, Haghighi T, Huebscher I, et al., 2020,
83. Ozbolat IT, Hospodiuk MJ, 2016, Current Advances Adhesive Hydrogels for Maxillofacial Tissue Regeneration
and Future Perspectives in Extrusion-based Bioprinting. Using Minimally Invasive Procedures. Adv Healthc Mater,
Biomaterials, 76:321–43. 9:1901134.
https://doi.org/10.1016/j.biomaterials.2015.10.076 https://doi.org/10.1002/adhm.201901134
84. Miri AK, Nieto D, Iglesias L, et al., 2018, Microfluidics- 93. Khare D, Basu B, Dubey AK, 2002, Electrical Stimulation
Enabled Multimaterial Maskless Stereolithographic and Piezoelectric Biomaterials for Bone Tissue Engineering
Bioprinting. Adv Mater, 30:e1800242.
Applications. Biomaterials, 258:120280.
https://doi.org/10.1002/adma.201870201 94. Wang Q, Chen X, Zhu J, et al., 2008, Porous Li-Na-K Niobate
85. Zhu W, Holmes B, Glazer RI, et al., 2016, 3D Printed
Nanocomposite Matrix for the Study of Breast Cancer Bone Bone-substitute Ceramics: Microstructure and Piezoelectric
Metastasis. Nanomedicine, 12:69–79. Properties. Mater Lettt, 62:3506–8.
https://doi.org/10.1016/j.nano.2015.09.010 https://doi.org/10.1016/j.matlet.2008.03.024
86. Zhou X, Zhu W, Nowicki M, et al., 2016, 3D Bioprinting a 95. Zhang X, Zhang C, Lin Y, et al., 2016, Nanocomposite
Cell-laden Bone Matrix for Breast Cancer Metastasis Study. Membranes Enhance Bone Regeneration Through Restoring
ACS Appl Mater Interfaces, 8:30017–26. Physiological Electric Microenvironment. ACS Nano,
https://doi.org/10.1021/acsami.6b10673 10:7279–86.
87. Stichler S, Jungst T, Schamel M, et al., 2017, Thiol-ene https://doi.org/10.1021/acsnano.6b02247.s001
Clickable Poly(glycidol) Hydrogels for Biofabrication. Ann 96. Mestres G, Perez RA, D’Elía NL, et al., 2019, Advantages
Biomed Eng, 45:273–85. of Microfluidic Systems for Studying Cell-biomaterial
https://doi.org/10.1007/s10439-016-1633-3 Interactions Focus on Bone Regeneration Applications.
88. Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and Biomed Phys Eng Express, 5:032001.
Organs. Nat Biotechnol, 32:773–85. https://doi.org/10.1088/2057-1976/ab1033
https://doi.org/10.1038/nbt.2958 97. Kirillova A, Maxson R, Stoychev G, et al., 2017, 4D
89. Baxter FR, Bowen CR, Turner IG, et al., 2010, Electrically Biofabrication Using Shape-morphing Hydrogels. Adv
Active Bioceramics: A Review of Interfacial Responses. Ann Mater, 29:1703443.
Biomed Eng, 38:2079–92. https://doi.org/10.1002/adma.201703443
International Journal of Bioprinting (2021)–Volume 7, Issue 3 53

