Page 57 - IJB-7-3
P. 57

Mei, et al.
           80.  Genova T,  Roato  I,  Carossa  M, et  al.,  2020, Advances  on      https://doi.org/10.1007/s10439-010-9977-6
               Bone  Substitutes  Through  3D  Bioprinting.  Int J Mol Sci,   90.  Jiang L, Wang Y, Liu Z, et al., 2019, Three-dimensional Printing
               21:7012.                                            and Injectable Conductive Hydrogels for Tissue Engineering
               https://doi.org/10.3390/ijms21197012                Application. Tissue Eng Part B Rev, 25:398–411.
           81.  Qiao  H.,  Tang  TJ,  2018,  Engineering  3D  Approaches  to      https://doi.org/10.1089/ten.teb.2019.0100
               Model  the  Dynamic  Microenvironments  of  Cancer  Bone   91.  Wei  K,  Zhu  M,  Sun Y, et  al., 2016, Robust Biopolymeric
               Metastasis. Bone Res, 6:1–12.                       Supramolecular  “Host  Guest  Macromer”  Hydrogels
               https://doi.org/10.1038/s41413-018-0008-9           Reinforced by In Situ Formed Multivalent Nanoclusters for
           82.  Ozbolat IT, Peng W, Ozbolat VJ, 2016, Application Areas of   Cartilage Regeneration. Macromolecules, 49:866–75.
               3D Bioprinting. Drug Discov Today, 21:1257–71.      https://doi.org/10.1021/acs.macromol.5b02527.s001
               https://doi.org/10.1016/j.drudis.2016.04.006    92.  Salzlechner  C,  Haghighi  T,  Huebscher  I, et  al., 2020,
           83.  Ozbolat  IT,  Hospodiuk  MJ,  2016,  Current  Advances   Adhesive  Hydrogels  for  Maxillofacial Tissue  Regeneration
               and  Future  Perspectives  in  Extrusion-based  Bioprinting.   Using Minimally Invasive Procedures. Adv Healthc Mater,
               Biomaterials, 76:321–43.                            9:1901134.
               https://doi.org/10.1016/j.biomaterials.2015.10.076     https://doi.org/10.1002/adhm.201901134
           84.  Miri AK,  Nieto  D,  Iglesias  L, et  al.,  2018,  Microfluidics-  93.  Khare D, Basu B, Dubey AK, 2002, Electrical Stimulation
               Enabled   Multimaterial   Maskless   Stereolithographic   and Piezoelectric Biomaterials for Bone Tissue Engineering
               Bioprinting. Adv Mater, 30:e1800242.
                                                                   Applications. Biomaterials, 258:120280.
               https://doi.org/10.1002/adma.201870201          94.  Wang Q, Chen X, Zhu J, et al., 2008, Porous Li-Na-K Niobate
           85.  Zhu  W,  Holmes  B,  Glazer  RI, et al., 2016, 3D Printed
               Nanocomposite Matrix for the Study of Breast Cancer Bone   Bone-substitute Ceramics: Microstructure and Piezoelectric
               Metastasis. Nanomedicine, 12:69–79.                 Properties. Mater Lettt, 62:3506–8.
               https://doi.org/10.1016/j.nano.2015.09.010          https://doi.org/10.1016/j.matlet.2008.03.024
           86.  Zhou X, Zhu W, Nowicki M, et al., 2016, 3D Bioprinting a   95.  Zhang  X,  Zhang  C,  Lin  Y, et al., 2016, Nanocomposite
               Cell-laden Bone Matrix for Breast Cancer Metastasis Study.   Membranes Enhance Bone Regeneration Through Restoring
               ACS Appl Mater Interfaces, 8:30017–26.              Physiological  Electric  Microenvironment.  ACS Nano,
               https://doi.org/10.1021/acsami.6b10673              10:7279–86.
           87.  Stichler  S,  Jungst  T,  Schamel  M, et al.,  2017, Thiol-ene      https://doi.org/10.1021/acsnano.6b02247.s001
               Clickable Poly(glycidol) Hydrogels for Biofabrication. Ann   96.  Mestres G, Perez RA, D’Elía NL, et al., 2019, Advantages
               Biomed Eng, 45:273–85.                              of  Microfluidic  Systems  for  Studying  Cell-biomaterial
               https://doi.org/10.1007/s10439-016-1633-3           Interactions  Focus  on  Bone  Regeneration  Applications.
           88.  Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and   Biomed Phys Eng Express, 5:032001.
               Organs. Nat Biotechnol, 32:773–85.                  https://doi.org/10.1088/2057-1976/ab1033
               https://doi.org/10.1038/nbt.2958                97.  Kirillova  A,  Maxson  R,  Stoychev  G, et  al., 2017, 4D
           89.  Baxter FR, Bowen CR, Turner IG, et al., 2010, Electrically   Biofabrication  Using  Shape-morphing  Hydrogels.  Adv
               Active Bioceramics: A Review of Interfacial Responses. Ann   Mater, 29:1703443.
               Biomed Eng, 38:2079–92.                             https://doi.org/10.1002/adma.201703443


















                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3        53
   52   53   54   55   56   57   58   59   60   61   62