Page 142 - IJB-8-2
P. 142

3D Printing of Hollow Microneedle Patches
               http://doi.org/10.1109/IEMBS.2009.5333317           http://doi.org/10.1166/jnn.2010.2636
           12.  Bolton CJ, Howells O, Blayney GJ, et al., 2020, Hollow   22.  Liu  X,  Li  R, Yuan  X, et  al., 2021, Fast Customization  of
               Silicon  Microneedle  Fabrication  Using  Advanced  Plasma   Microneedle Arrays by Static Optical Projection Lithography.
               Etch  Technologies  for  Applications in  Transdermal  Drug   ACS Appl Mater Interfaces, 13:60522–30.
               Delivery. Lab Chip, 20:2788–95.                     http://doi.org/10.1021/acsami.1c21489
               http://doi.org/10.1039/d0lc00567c               23.  Tan JY, Kim A, Kim JJ, 2021, Modeling, Characterization,
           13.  Li Y, Zhang H, Yang R, et al., 2019, Fabrication of Sharp   and Fabrication of Bell-tip Microneedle  Array by
               Silicon Hollow Microneedles by Deep-reactive Ion Etching   Diffraction and Self-aligned Lens Effects. Appl Phys Lett,
               Towards Minimally  Invasive  Diagnostics.  Microsyst   119:023501.
               Nanoeng, 5:41.                                      http://doi.org/10.1063/5.0055073
               http://doi.org/10.1038/s41378-019-0077-y        24.  Yang C, Yu Y, Wang X, et al., 2021, Cellular Fluidic-based
           14.  Trautmann A, Roth GL, Nujiqi  B, et  al., 2019, Towards a   Vascular  Networks  for  Tissue  Engineering.  Eng  Regen,
               Versatile  Point-of-care System Combining Femtosecond   2:171–4.
               Laser  Generated  Microfluidic  Channels  And  Direct  Laser      http://doi.org/10.1016/j.engreg.2021.09.006
               Written Microneedle Arrays. Microsyst Nanoeng, 5:6.  25.  Use of International Standard ISO-10993-1, 2020, Biological
               http://doi.org/10.1038/s41378-019-0046-5            Evaluation of Medical Devices Part 1: Evaluation and Testing
           15.  Carcamo-Martinez A, Mallon B, Dominguez-Robles J, et al.,   within a Risk Management Process. In: US Department of
               2021, Hollow Microneedles:  A  Perspective in Biomedical   Health  and Human Services  FDA, Center  for Devices  and
               Applications. Int J Pharm, 599:120455.              Radiological  Health, Center for Biologics Evaluation  and
               http://doi.org/10.1016/j.ijpharm.2021.120455        Research.
           16.  Xenikakis I, Tsongas K, Tzimtzimis EK, et al., 2021, Fabrication   26.  Lim SH,  Tiew  WJ, Zhang  J, et al., 2020, Geometrical
               of Hollow Microneedles Using Liquid Crystal Display (LCD)   Optimisation  of a  Personalised  Microneedle  Eye  Patch
               Vat Polymerization 3D Printing Technology for Transdermal   for  Transdermal  Delivery  of  Anti-wrinkle  Small  Peptide.
               Macromolecular Delivery. Int J Pharm, 597:120303.   Biofabrication, 12:035003.
               http://doi.org/10.1016/j.ijpharm.2021.120303        http://doi.org/10.1088/1758-5090/ab6d37
           17.  Yeung C, Chen S, King B, et  al., 2019,  A 3D-Printed   27.  Zhang D, Das DB, Rielly CD, 2014, Microneedle Assisted
               Microfluidic-enabled  Hollow  Microneedle Architecture  for   Micro-Particle Delivery from Gene Guns: Experiments Using
               Transdermal Drug Delivery. Biomicrofluidics, 13:064125.  Skin-Mimicking Agarose Gel. J Pharm Sci, 103:613–27.
               http://doi.org/10.1063/1.5127778                    http://doi.org/10.1002/jps.23835
           18.  Ovsianikov BC, Mente P, Monteiro-Riviere NA, et al., 2007,   28.  Wang J,  Yu J, Zhang  Y, et  al., 2019, Charge-switchable
               Two  Photon Polymerization  of Polymer–Ceramic  Hybrid   Polymeric Complex for Glucose-responsive Insulin Delivery
               Materials for Transdermal Drug Delivery. Int J Appl Ceram   in Mice and Pigs. Sci Adv, 5:eaaw4357.
               Technol, 4:22–9.                                    http://doi.org/10.1126/sciadv.aaw4357
               http://doi.org/10.1111/j.1744-7402.2007.02115.x  29.  Zhou C, Tang H, Zhang L, et al., 2021, Hollow Microneedle
           19.  Mathew E,  Pitzanti  G, Dos Santos  AL, et  al., 2021,   Arrays Produced by Low‐Cost, High‐Fidelity Replication of
               Optimization  of Printing  Parameters for Digital  Light   Hypodermic Needle Tips for High‐Dose Transdermal Drug
               Processing 3D Printing  of Hollow Microneedle  Arrays.   Delivery. Adv Eng Mater, 23:2001355.
               Pharmaceutics, 13:1837.                             http://doi.org/10.1002/adem.202001355
               http://doi.org/10.3390/pharmaceutics13111837    30.  Oskui  SM,  Diamante  G,  Liao  C, et al.,  2016, Assessing
           20.  Liao  C,  Anderson  W,  Antaw  F, et  al.,  2019,  Two-Photon   and Reducing the Toxicity of 3D-Printed Parts. Environ Sci
               Nanolithography  of  Tailored  Hollow three-dimensional   Technol Lett, 3:1–6.
               Microdevices for Biosystems. ACS Omega, 4:1401–9.     http://doi.org/10.1021/acs.estlett.5b00249
               http://doi.org/10.1021/acsomega.8b03164         31.  Davis SP, Landis BJ, Adams ZH, et al., 2004, Insertion of
           21.  Doraiswamy  A,  Ovsianikov  A,  Gittard  SD, et  al.,   Microneedles  into  Skin:  Measurement  and  Prediction  of
               2010,  Fabrication  of Microneedles Using  Two Photon   Insertion Force and Needle Fracture Force.  J  Biomech,
               Polymerization for Transdermal Delivery of Nanomaterials.   37:1155–63.
               J Nanosci Nanotechnol, 10:6305–12.                  http://doi.org/10.1016/j.jbiomech.2003.12.010

           134                         International Journal of Bioprinting (2022)–Volume 8, Issue 2
   137   138   139   140   141   142   143   144   145   146   147