Page 19 - IJB-8-2
P. 19
Hu, et al.
https://doi.org/10.1002/jbm.a.35914 https://doi.org/10.1021/acsbiomaterials.8b01456
5. Xue J, Wu T, Dai Y, et al., 2019, Electrospinning 15. Abbasi N, Ivanovski S, Gulati K, et al., 2020, Role of Offset
and Electrospun Nanofibers: Methods, Materials, and and Gradient Architectures of 3-D Melt Electrowritten
Applications. Chem Rev, 119:5298–415. Scaffold on Differentiation and Mineralization of Osteoblasts.
https://doi.org/10.1021/acs.chemrev.8b00593 Biomater Res, 24:2.
6. Nekounam H, Samadian H, Bonakdar S, et al., 2021, Electro- https://doi.org/10.1186/s40824-019-0180-z
Conductive Carbon Nanofibers Containing Ferrous Sulfate 16. Mao M, He J, Li Z, et al., 2020, Multi-Directional Cellular
for Bone Tissue Engineering. Life Sci, 282:119602. Alignment in 3D Guided by Electrohydrodynamically-
https://doi.org/10.1016/j.lfs.2021.119602 Printed Microlattices. Acta Biomater, 101:141–51.
7. Wu L, Gu Y, Liu L, et al., 2020, Hierarchical Micro/ https://doi.org/10.1016/j.actbio.2019.10.028
Nanofibrous Membranes of Sustained Releasing VEGF for 17. Brennan CM, Eichholz KF, Hoey DA, 2019, The Effect
Periosteal Regeneration. Biomaterials, 227:119555. of Pore Size within Fibrous Scaffolds Fabricated Using
https://doi.org/10.1016/j.biomaterials.2019.119555 Melt Electrowriting on Human Bone Marrow Stem Cell
8. Yao Q, Cosme J G, Xu T, et al., 2017, Three Dimensional Osteogenesis. Biomed Mater, 14:065016.
Electrospun PCL/PLA Blend Nanofibrous Scaffolds with https://doi.org/10.1088/1748-605X/ab49f2
Significantly Improved Stem Cells Osteogenic Differentiation 18. Eichholz KF, Hoey DA, 2018, Mediating Human Stem
and Cranial Bone Formation. Biomaterials, 115:115–27. Cell Behaviour Via Defined Fibrous Architectures by Melt
https://doi.org/10.1016/j.biomaterials.2016.11.018 Electrospinning Writing. Acta Biomater, 75:140–51.
9. Ren K, Wang Y, Sun T, et al., 2017, Electrospun PCL/Gelatin https://doi.org/10.1016/j.actbio.2018.05.048
Composite Nanofiber Structures for Effective Guided Bone 19. Xie C, Gao Q, Wang P, et al., 2019, Structure-Induced Cell
Regeneration Membranes. Mater Sci Eng C Mater Biol Appl, Growth by 3D Printing of Heterogeneous Scaffolds with
78:324–32. Ultrafine Fibers. Mater Des, 181:108092.
https://doi.org/10.1016/j.msec.2017.04.084 https://doi.org/10.1016/j.matdes.2019.108092
10. Bean AC, Tuan RS, 2015, Fiber Diameter and Seeding 20. Zhang B, He J, Lei Q, et al., 2019, Electrohydrodynamic
Density Influence Chondrogenic Differentiation of Printing of Sub-Microscale Fibrous Architectures with
Mesenchymal Stem Cells Seeded on Electrospun Poly Improved Cell Adhesion Capacity. Virtual Phys Prototyp,
(Epsilon-Caprolactone) Scaffolds. Biomed Mater, 10:015018. 15:62-74.
https://doi.org/10.1088/1748-6041/10/1/015018 https://doi.org/10.1080/17452759.2019.1662991
11. Shanmugasundaram S, Chaudhry H, Arinzeh TL, 2011, 21. He J, Xu F, Dong R, et al., 2017, Electrohydrodynamic 3D
Microscale Versus Nanoscale Scaffold Architecture for Printing of Microscale Poly (Epsilon-Caprolactone) Scaffolds
Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A, with Multi-Walled Carbon Nanotubes. Biofabrication,
17:831–40. 9:015007.
https://doi.org/10.1089/ten.TEA.2010.0409 https://doi.org/10.1088/1758-5090/aa53bc
12. Sisson K, Zhang C, Farach-Carson MC, et al., 2010, 22. Vijayavenkataraman S, Thaharah S, Zhang S, et al., 2019,
Fiber Diameters Control Osteoblastic Cell Migration and 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral
Differentiation in Electrospun Gelatin. J Biomed Mater Res Nerve Injury Repair. Artif Organs, 43:515–23.
A, 94:1312–20. https://doi.org/10.1111/aor.13360
https://doi.org/10.1002/jbm.a.32756 23. Zhou Hand Lee J, 2011, Nanoscale Hydroxyapatite Particles
13. He J, Zhang B, Li Z, et al., 2020, High-Resolution for Bone Tissue Engineering. Acta Biomater, 7:2769–81.
Electrohydrodynamic Bioprinting: A New Biofabrication https://doi.org/10.1016/j.actbio.2011.03.019
Strategy for Biomimetic Micro/Nanoscale Architectures and 24. Turnbull G, Clarke J, Picard F, et al., 2018, 3D Bioactive
Living Tissue Constructs. Biofabrication, 12:042002. Composite Scaffolds for Bone Tissue Engineering. Bioact
https://doi.org/10.1088/1758-5090/aba1fa Mater, 3:278–314.
14. Abbasi N, Abdal-hay A, Hamlet S, et al., 2019, Effects of https://doi.org/10.1016/j.bioactmat.2017.10.001
Gradient and Offset Architectures on the Mechanical and 25. Wu X, Miao L, Yao Y, et al., 2014, Electrospun Fibrous
Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds Combined with Nanoscale Hydroxyapatite Induce
Scaffolds. ACS Biomater Sci Eng, 5:3448–61. Osteogenic Differentiation of Human Periodontal Ligament
International Journal of Bioprinting (2022)–Volume 8, Issue 2 11

