Page 19 - IJB-8-2
P. 19

Hu, et al.
               https://doi.org/10.1002/jbm.a.35914                 https://doi.org/10.1021/acsbiomaterials.8b01456
           5.   Xue  J,  Wu  T,  Dai  Y, et  al.,  2019,  Electrospinning   15.  Abbasi N, Ivanovski S, Gulati K, et al., 2020, Role of Offset
               and  Electrospun  Nanofibers:  Methods,  Materials,  and   and  Gradient  Architectures  of  3-D  Melt  Electrowritten
               Applications. Chem Rev, 119:5298–415.               Scaffold on Differentiation and Mineralization of Osteoblasts.
               https://doi.org/10.1021/acs.chemrev.8b00593         Biomater Res, 24:2.
           6.   Nekounam H, Samadian H, Bonakdar S, et al., 2021, Electro-     https://doi.org/10.1186/s40824-019-0180-z
               Conductive  Carbon  Nanofibers  Containing  Ferrous  Sulfate   16.  Mao M, He J, Li Z, et al., 2020, Multi-Directional Cellular
               for Bone Tissue Engineering. Life Sci, 282:119602.  Alignment  in  3D  Guided  by  Electrohydrodynamically-
               https://doi.org/10.1016/j.lfs.2021.119602           Printed Microlattices. Acta Biomater, 101:141–51.
           7.   Wu  L,  Gu  Y,  Liu  L, et  al.,  2020,  Hierarchical  Micro/     https://doi.org/10.1016/j.actbio.2019.10.028
               Nanofibrous Membranes of Sustained Releasing VEGF for   17.  Brennan  CM,  Eichholz  KF,  Hoey  DA,  2019,  The  Effect
               Periosteal Regeneration. Biomaterials, 227:119555.  of  Pore  Size  within  Fibrous  Scaffolds  Fabricated  Using
               https://doi.org/10.1016/j.biomaterials.2019.119555  Melt  Electrowriting  on  Human  Bone  Marrow  Stem  Cell
           8.   Yao Q, Cosme J G, Xu T, et al., 2017, Three Dimensional   Osteogenesis. Biomed Mater, 14:065016.
               Electrospun  PCL/PLA  Blend  Nanofibrous  Scaffolds  with      https://doi.org/10.1088/1748-605X/ab49f2
               Significantly Improved Stem Cells Osteogenic Differentiation   18.  Eichholz  KF,  Hoey  DA,  2018,  Mediating  Human  Stem
               and Cranial Bone Formation. Biomaterials, 115:115–27.  Cell Behaviour Via Defined Fibrous Architectures by Melt
               https://doi.org/10.1016/j.biomaterials.2016.11.018  Electrospinning Writing. Acta Biomater, 75:140–51.
           9.   Ren K, Wang Y, Sun T, et al., 2017, Electrospun PCL/Gelatin      https://doi.org/10.1016/j.actbio.2018.05.048
               Composite Nanofiber Structures for Effective Guided Bone   19.  Xie C, Gao Q, Wang P, et al., 2019, Structure-Induced Cell
               Regeneration Membranes. Mater Sci Eng C Mater Biol Appl,   Growth  by  3D  Printing  of  Heterogeneous  Scaffolds  with
               78:324–32.                                          Ultrafine Fibers. Mater Des, 181:108092.
               https://doi.org/10.1016/j.msec.2017.04.084          https://doi.org/10.1016/j.matdes.2019.108092
           10.  Bean  AC,  Tuan  RS,  2015,  Fiber  Diameter  and  Seeding   20.  Zhang  B,  He  J,  Lei  Q, et al.,  2019,  Electrohydrodynamic
               Density   Influence   Chondrogenic   Differentiation   of   Printing  of  Sub-Microscale  Fibrous  Architectures  with
               Mesenchymal  Stem Cells Seeded on Electrospun  Poly   Improved  Cell  Adhesion  Capacity.  Virtual  Phys  Prototyp,
               (Epsilon-Caprolactone) Scaffolds. Biomed Mater, 10:015018.  15:62-74.
               https://doi.org/10.1088/1748-6041/10/1/015018       https://doi.org/10.1080/17452759.2019.1662991
           11.  Shanmugasundaram  S,  Chaudhry  H,  Arinzeh  TL,  2011,   21.  He J, Xu F, Dong R, et al., 2017, Electrohydrodynamic 3D
               Microscale  Versus  Nanoscale  Scaffold  Architecture  for   Printing of Microscale Poly (Epsilon-Caprolactone) Scaffolds
               Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A,   with  Multi-Walled  Carbon  Nanotubes.  Biofabrication,
               17:831–40.                                          9:015007.
               https://doi.org/10.1089/ten.TEA.2010.0409           https://doi.org/10.1088/1758-5090/aa53bc
           12.  Sisson  K,  Zhang  C,  Farach-Carson  MC, et al.,  2010,   22.  Vijayavenkataraman S, Thaharah  S,  Zhang  S, et al.,  2019,
               Fiber  Diameters  Control  Osteoblastic  Cell  Migration  and   3D-Printed  PCL/rGO  Conductive  Scaffolds  for  Peripheral
               Differentiation in Electrospun Gelatin. J Biomed Mater Res   Nerve Injury Repair. Artif Organs, 43:515–23.
               A, 94:1312–20.                                      https://doi.org/10.1111/aor.13360
               https://doi.org/10.1002/jbm.a.32756             23.  Zhou Hand Lee J, 2011, Nanoscale Hydroxyapatite Particles
           13.  He  J,  Zhang  B,  Li  Z, et  al.,  2020,  High-Resolution   for Bone Tissue Engineering. Acta Biomater, 7:2769–81.
               Electrohydrodynamic  Bioprinting:  A  New  Biofabrication      https://doi.org/10.1016/j.actbio.2011.03.019
               Strategy for Biomimetic Micro/Nanoscale Architectures and   24.  Turnbull G, Clarke J, Picard F, et al., 2018, 3D Bioactive
               Living Tissue Constructs. Biofabrication, 12:042002.  Composite  Scaffolds  for  Bone  Tissue  Engineering.  Bioact
               https://doi.org/10.1088/1758-5090/aba1fa            Mater, 3:278–314.
           14.  Abbasi N, Abdal-hay A, Hamlet S, et al., 2019, Effects of      https://doi.org/10.1016/j.bioactmat.2017.10.001
               Gradient  and  Offset  Architectures  on  the  Mechanical  and   25.  Wu  X,  Miao  L,  Yao  Y, et  al.,  2014,  Electrospun  Fibrous
               Biological  Properties  of  3-D  Melt  Electrowritten  (MEW)   Scaffolds Combined with Nanoscale Hydroxyapatite Induce
               Scaffolds. ACS Biomater Sci Eng, 5:3448–61.         Osteogenic Differentiation of Human Periodontal Ligament

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 2        11
   14   15   16   17   18   19   20   21   22   23   24