Page 51 - IJB-8-2
        P. 51
     Jiao, et al.
           14.  Yan  G,  Yuan  Y,  He  M,  et al.,  2020,  m6A  Methylation  of   25.  Huang  Y,  Jin  X,  Zhang  X,  et  al.,  2009,  In  Vitro  and
               Precursor-miR-320/RUNX2  Controls  Osteogenic  Potential   In  Vivo  Evaluation  of  Akermanite  Bioceramics  for  Bone
               of  Bone  Marrow-Derived  Mesenchymal  Stem  Cells.  Mol   Regeneration. Biomaterials, 30:5041–8.
               Ther Nucleic Acids, 19:421–36.                      https://doi.org/10.1016/j.biomaterials.2009.05.077
               https://doi.org/10.1016/j.omtn.2019.12.001      26.  Sun  X,  Ma  Z,  Zhao  X,  et  al.,  2021,  Three-dimensional
           15.  Chen J, Tian Y, Zhang Q, et al., 2021, Novel Insights into   Bioprinting  of  Multicell-laden  Scaffolds  Containing  Bone
               the Role of N6-Methyladenosine RNA Modification in Bone   Morphogenic  Protein-4  for  Promoting  M2  Macrophage
               Pathophysiology. Stem Cells Dev, 30:17–28.          Polarization and Accelerating Bone Defect Repair in Diabetes
               https://doi.org/10.1089/scd.2020.0157               Mellitus. Bioact Mater, 6:757–69.
           16.  Lee  M,  Kim  B,  Kim  VN,  2014,  Emerging  Roles  of  RNA      https://doi.org/10.1016/j.bioactmat.2020.08.030
               Modification: m 6 A and U-Tail. Cell, 158:980–7.  27.  Zheng M, Weng M, Zhang X, et al., 2021, Beta-tricalcium
               https://doi.org/10.1016/j.cell.2014.08.005          Phosphate  Promotes  Osteogenic  Differentiation  of  Bone
           17.  Zhao  BS,  Roundtree  IA,  He  C,  2017,  Post-transcriptional   Marrow-derived   Mesenchymal   Stem   Cells   through
               Gene Regulation by mRNA Modifications. Nat Rev Mol Cell   Macrophages. Biomed Mater, 16:025005.
               Biol, 18:31–42.                                     https://doi.org/10.1088/1748-605X/abdbdc
               https://doi.org/10.1038/nrm.2016.132            28.  El-Rashidy  AA,  Roether  JA,  Harhaus  L,  et  al.,  2017,
           18.  He C, 2010, Grand Challenge Commentary: RNA epigenetics?   Regenerating Bone with Bioactive Glass Scaffolds: A Review
               Nat Chem Biol, 6:863–65.                            of In Vivo Studies in Bone Defect Models. Acta Biomater,
               https://doi.org/10.1038/nchembio.482                62:1–28.
           19.  Yang  Y,  Hsu  PJ,  Chen  YS, et  al.,  2018,  Dynamic      https://doi.org/10.1016/j.actbio.2017.08.030
               Transcriptomic  m6A  Decoration: Writers,  Erasers,  Readers   29.  Wu  D,  Wang  Z,  Wang  J,  et  al.,  2018,  Development  of  a
               and Functions in RNA Metabolism. Cell Res, 28:616–24.  Micro-tissue-mediated  Injectable  Bone  Tissue  Engineering
               https://doi.org/10.1038/s41422-018-0040-8           Strategy for Large Segmental Bone Defect Treatment. Stem
           20.  Wu  Y,  Xie  L,  Wang  M,  et al.,  2018,  Mettl3-mediated   Cell Res Ther, 9:331.
               m6A  RNA  Methylation  regulates  the  fate  of  bone  marrow      https://doi.org/10.1186/s13287-018-1064-1
               mesenchymal  stem  cells  and  osteoporosis.  Nat Commun,   30.  Stevens  MM,  2008,  Biomaterials  for  Bone  Tissue
               9:4772.                                             Engineering. Mater Today, 11:18–25.
               https://doi.org/10.1038/s41467-018-06898-4          https://doi.org/10.1016/S1369-7021(08)70086-5
           21.  Yu J, Shen L, Liu Y, et al., 2020, The m6A Methyltransferase   31.  Baldwin  P,  Li  DJ,  Auston  DA,  et  al.,  2019,  Autograft,
               METTL3  Cooperates  with  Demethylase  ALKBH5  to   Allograft, and Bone Graft Substitutes: Clinical Evidence and
               Regulate  Osteogenic  Differentiation  through  NF-κB   Indications  for  Use  in  the  Setting  of  Orthopaedic  Trauma
               Signaling. Mol Cell Biochem, 463:203–10.            Surgery. J Orthop Trauma, 33:203–13.
               https://doi.org/10.1007/s11010-019-03641-5          https://doi.org/10.1097/BOT.0000000000001420
           22.  Liu Y, Gu C, Li X, et al., 2021, Involvement of METTL3/  32.  Prakash  J,  Prema  D,  Venkataprasanna  KS, et al.,  2020,
               m6Adenosine  and  TGFβ/Smad3  Signaling  on  Tenon’s   Nanocomposite Chitosan Film Containing Graphene Oxide/
               Fibroblasts  and  in  a  Rabbit  Model  of  Glaucoma  Surgery.   Hydroxyapatite/Gold for Bone Tissue Engineering. Int J Biol
               J Mol Histol, 52:1129–44.                           Macromol, 154:62–71.
               https://doi.org/10.1007/s10735-021-10028-8          https://doi.org/10.1016/j.ijbiomac.2020.03.095
           23.  Liu L, Yu F, Li L, et al., 2021, Bone Marrow Stromal Cells   33.  Kaushik  N,  Nguyen  LN,  Kim  JH, et al.,  2020,  Strategies
               Stimulated  by  Strontium-substituted  Calcium  Silicate   for  Using  Polydopamine  to  Induce  Biomineralization  of
               Ceramics:  Release  of  Exosomal  miR-146a  Regulates   Hydroxyapatite  on  Implant  Materials  for  Bone  Tissue
               Osteogenesis and Angiogenesis. Acta Biomater, 119:444–57.  Engineering. Int J Mol Sci, 21:E6544.
               https://doi.org/10.1016/j.actbio.2020.10.038        https://doi.org/10.3390/ijms21186544
           24.  Zhou P, Xia D, Ni Z, et al., 2021, Calcium Silicate Bioactive   34.  Take Y, Mae T, Yoneda M, et al., 2020, On-lay Grafting of
               Ceramics Induce Osteogenesis through Oncostatin M. Bioact   a  Calcium  Hydroxyapatite  Bone  Substitute: A  Preliminary
               Mater, 6:810–22.                                    Animal Experimental Study. J Orthop Sci, 25:1101–6.
               https://doi.org/10.1016/j.bioactmat.2020.09.018     https://doi.org/10.1016/j.jos.2019.12.012
                                       International Journal of Bioprinting (2022)–Volume 8, Issue 2        43
     	
