Page 51 - IJB-8-2
P. 51
Jiao, et al.
14. Yan G, Yuan Y, He M, et al., 2020, m6A Methylation of 25. Huang Y, Jin X, Zhang X, et al., 2009, In Vitro and
Precursor-miR-320/RUNX2 Controls Osteogenic Potential In Vivo Evaluation of Akermanite Bioceramics for Bone
of Bone Marrow-Derived Mesenchymal Stem Cells. Mol Regeneration. Biomaterials, 30:5041–8.
Ther Nucleic Acids, 19:421–36. https://doi.org/10.1016/j.biomaterials.2009.05.077
https://doi.org/10.1016/j.omtn.2019.12.001 26. Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional
15. Chen J, Tian Y, Zhang Q, et al., 2021, Novel Insights into Bioprinting of Multicell-laden Scaffolds Containing Bone
the Role of N6-Methyladenosine RNA Modification in Bone Morphogenic Protein-4 for Promoting M2 Macrophage
Pathophysiology. Stem Cells Dev, 30:17–28. Polarization and Accelerating Bone Defect Repair in Diabetes
https://doi.org/10.1089/scd.2020.0157 Mellitus. Bioact Mater, 6:757–69.
16. Lee M, Kim B, Kim VN, 2014, Emerging Roles of RNA https://doi.org/10.1016/j.bioactmat.2020.08.030
Modification: m 6 A and U-Tail. Cell, 158:980–7. 27. Zheng M, Weng M, Zhang X, et al., 2021, Beta-tricalcium
https://doi.org/10.1016/j.cell.2014.08.005 Phosphate Promotes Osteogenic Differentiation of Bone
17. Zhao BS, Roundtree IA, He C, 2017, Post-transcriptional Marrow-derived Mesenchymal Stem Cells through
Gene Regulation by mRNA Modifications. Nat Rev Mol Cell Macrophages. Biomed Mater, 16:025005.
Biol, 18:31–42. https://doi.org/10.1088/1748-605X/abdbdc
https://doi.org/10.1038/nrm.2016.132 28. El-Rashidy AA, Roether JA, Harhaus L, et al., 2017,
18. He C, 2010, Grand Challenge Commentary: RNA epigenetics? Regenerating Bone with Bioactive Glass Scaffolds: A Review
Nat Chem Biol, 6:863–65. of In Vivo Studies in Bone Defect Models. Acta Biomater,
https://doi.org/10.1038/nchembio.482 62:1–28.
19. Yang Y, Hsu PJ, Chen YS, et al., 2018, Dynamic https://doi.org/10.1016/j.actbio.2017.08.030
Transcriptomic m6A Decoration: Writers, Erasers, Readers 29. Wu D, Wang Z, Wang J, et al., 2018, Development of a
and Functions in RNA Metabolism. Cell Res, 28:616–24. Micro-tissue-mediated Injectable Bone Tissue Engineering
https://doi.org/10.1038/s41422-018-0040-8 Strategy for Large Segmental Bone Defect Treatment. Stem
20. Wu Y, Xie L, Wang M, et al., 2018, Mettl3-mediated Cell Res Ther, 9:331.
m6A RNA Methylation regulates the fate of bone marrow https://doi.org/10.1186/s13287-018-1064-1
mesenchymal stem cells and osteoporosis. Nat Commun, 30. Stevens MM, 2008, Biomaterials for Bone Tissue
9:4772. Engineering. Mater Today, 11:18–25.
https://doi.org/10.1038/s41467-018-06898-4 https://doi.org/10.1016/S1369-7021(08)70086-5
21. Yu J, Shen L, Liu Y, et al., 2020, The m6A Methyltransferase 31. Baldwin P, Li DJ, Auston DA, et al., 2019, Autograft,
METTL3 Cooperates with Demethylase ALKBH5 to Allograft, and Bone Graft Substitutes: Clinical Evidence and
Regulate Osteogenic Differentiation through NF-κB Indications for Use in the Setting of Orthopaedic Trauma
Signaling. Mol Cell Biochem, 463:203–10. Surgery. J Orthop Trauma, 33:203–13.
https://doi.org/10.1007/s11010-019-03641-5 https://doi.org/10.1097/BOT.0000000000001420
22. Liu Y, Gu C, Li X, et al., 2021, Involvement of METTL3/ 32. Prakash J, Prema D, Venkataprasanna KS, et al., 2020,
m6Adenosine and TGFβ/Smad3 Signaling on Tenon’s Nanocomposite Chitosan Film Containing Graphene Oxide/
Fibroblasts and in a Rabbit Model of Glaucoma Surgery. Hydroxyapatite/Gold for Bone Tissue Engineering. Int J Biol
J Mol Histol, 52:1129–44. Macromol, 154:62–71.
https://doi.org/10.1007/s10735-021-10028-8 https://doi.org/10.1016/j.ijbiomac.2020.03.095
23. Liu L, Yu F, Li L, et al., 2021, Bone Marrow Stromal Cells 33. Kaushik N, Nguyen LN, Kim JH, et al., 2020, Strategies
Stimulated by Strontium-substituted Calcium Silicate for Using Polydopamine to Induce Biomineralization of
Ceramics: Release of Exosomal miR-146a Regulates Hydroxyapatite on Implant Materials for Bone Tissue
Osteogenesis and Angiogenesis. Acta Biomater, 119:444–57. Engineering. Int J Mol Sci, 21:E6544.
https://doi.org/10.1016/j.actbio.2020.10.038 https://doi.org/10.3390/ijms21186544
24. Zhou P, Xia D, Ni Z, et al., 2021, Calcium Silicate Bioactive 34. Take Y, Mae T, Yoneda M, et al., 2020, On-lay Grafting of
Ceramics Induce Osteogenesis through Oncostatin M. Bioact a Calcium Hydroxyapatite Bone Substitute: A Preliminary
Mater, 6:810–22. Animal Experimental Study. J Orthop Sci, 25:1101–6.
https://doi.org/10.1016/j.bioactmat.2020.09.018 https://doi.org/10.1016/j.jos.2019.12.012
International Journal of Bioprinting (2022)–Volume 8, Issue 2 43

