Page 114 - IJB-8-4
P. 114

Effect of Bioprinting-Associated Shear Stress and Hydrostatic Pressure
               Agarose-type I Collagen Blends Comprise 3D Printability and   18. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
               Angio-genesis  Potential  for  Tissue  Engineered  Substitutes.   of  Heterogeneous  Aortic  Valve  Conduits  with  Alginate/
               Tissue Eng Part C Methods, 23:604–15.               Gelatin Hydrogels. J Biomed Mater Res A, 101:1255–64.
               https://doi.org/10.1089/ten.tec.2017.0234           http://doi.org/10.1002/jbm.a.34420
           7.  Stratesteffen H, Köpf M, Kreimendahl F, et al., 2017, GelMA-  19. Tabriz  AG,  Hermida  MA,  Leslie  NR,  et  al.,  Three-
               collagen  Blends  Enable  Drop-on-demand  3D  Printablility  dimensional  Bioprinting  of  Complex  Cell  Laden  Alginate
               and Promote Angiogenesis. Biofabrication, 9:045002.  Hydrogel Structures. Biofabrication, 7:045012.
               https://doi.org/10.1088/1758-5090/aa857c            http://doi.org/10.1088/1758-5090/7/4/045012
           8.  Blaeser A, Campos DF, Fischer H, 2017, 3D Bioprinting of  20. Papaioannou TG, Stefanadis C, 2005, Vascular Wall Shear
               Cell-laden Hydrogels for Advanced Tissue Engineering. Curr  Stress:  Basic  Principles  and  Methods.  Hellenic  J Cardiol,
               Opin Biomed Eng, 2:58–66.                           46:9–15.
               https://doi.org/10.1016/j.cobme.2017.04.003     21. Koutsiaris AG, Tachmitzi SV, Batis N, et al., 2007, Volume
           9.  Simunovic F, Finkenzeller G, 2021, Vascularization Strategies  Flow  and  Wall  Shear  Stress  Quantification  in  the  Human
               in Bone Tissue Engineering. Cells, 10:1749.         Conjunctival Capillaries and Post-capillary Venules In Vivo.
               https://doi.org/10.3390/cells10071749               Biorheology, 44:375–86.
           10. Blaeser A, Campos DF, Puster U, et al., 2016, Controlling  22. Reneman RS, Hoeks AP, 2008, Wall Shear Stress as Measured
               Shear Stress in 3D-Bioprinting is a Key Factor to Balance  In Vivo: Consequences for the Design of the Arterial System.
               Printing  Resolution  and  Stem  Cell  Integrity.  Adv  Healthc  Med Biol Eng Comput, 46:499–507.
               Mater, 5:326–33.                                    http://doi.org/10.1007/s11517-008-0330-2
               https://doi.org/10.1002/adhm.201500677          23. Mahmoud  MM,  Serbanovic-Canic  J,  Feng  S,  et al.,  2017,
           11.  Jentsch S, Nasehi R, Kuckelkorn C, et al., 2021, Multiscale  Shear Stress Induces Endothelial-to-mesenchymal Transition
               3D  Bioprinting  by  Nozzle-free Acoustic  Droplet  Ejection.  Via the Transcription Factor Snail. Sci Rep, 7:3375.
               Small Methods, 5:e2000971.                          http://doi.org/10.1038/s41598-017-03532-z
               https://doi.org/10.1002/smtd.202000971          24. van der Meer AD, Poot AA, Feijen J, et al., 2010, Analyzing
           12. Chand  R,  Muhire  BS,  Vijayavenkataraman  SS,  2022,  Shear  Stress-Induced  Alignment  of  Actin  Filaments  in
               Computational  Fluid  Dynamics  Assessment  of  the  Effect  Endothelial Cells with a Microfluidic Assay. Biomicrofluidics,
               of  Bioprinting  Parameters  in  Extrusion  Bioprinting.  Int J  4:11103.
               Bioprint, 8:45-60.                                  http://doi.org/10.1063/1.3366720
               http://doi.org/10.18063/ijb.v8i2.545            25. Pang  Z,  Antonetti  DA,  Tarbell  JM,  2005,  Shear  Stress
           13. Axpe  E,  Oyen  ML,  2016,  Applications  of  Alginate-based  Regulates  HUVEC  Hydraulic  Conductivity  by  Occludin
               Bioinks in 3D Bioprinting. Int J Mol Sci, 17:1976.  Phosphorylation. Ann Biomed Eng, 33:1536–45.
               http://doi.org/10.3390/ijms17121976.                http://doi.org/10.1007/s10439-005-7786-0
           14. Augst AD, Kong HJ, Mooney DJ, 2006, Alginate Hydrogels  26. Faulkner-Jones  A,  Fyfe  C,  Cornelissen  DJ,  et al.,  2015,
               as Biomaterials. Macromol Biosci, 6:623–33.         Bioprinting  of  Human  Pluripotent  Stem  Cells  and  their
               http://doi.org/10.1002/mabi.200600069               Directed  Differentiation  into  Hepatocyte-like  Cells  for  the
           15. Kuo  CK,  Ma  PX,  2001,  Ionically  Crosslinked  Alginate  Generation of Mini-livers in 3D. Biofabrication, 7:044102.
               Hydrogels  as  Scaffolds  for  Tissue  Engineering:  Part  1.  http://doi.org/10.1088/1758-5090/7/4/044102
               Structure,  Gelation  Rate  and  Mechanical  Properties.  27. Markstedt  K,  Mantas  A,  Tournier  I,  et al.,  2015,  3D
               Biomaterials, 22:511–21.                            Bioprinting  Human  Chondrocytes  with  Nanocellulose-
               http://doi.org/10.1016/s0142-9612(00)00201-5        alginate Bioink for Cartilage Tissue Engineering Applications.
           16. Gasperini  L,  Mano  JF,  Reis  RL,  2014,  Natural  Polymers  Biomacromolecules, 16:1489–96.
               for  the  Microencapsulation  of  Cells  J R Soc Interface,  http://doi.org/10.1021/acs.biomac.5b00188
               11:20140817.                                    28. Nair K, Gandhi M, Khalil S, et al., 2009, Characterization
               http://doi.org/10.1098/rsif.2014.0817               of Cell Viability during Bioprinting Processes. Biotechnol J,
           17. Lee KY, Mooney DJ, 2001, Hydrogels for Tissue Engineering.  4:1168–77.
               Chem Rev, 101:1869–79.                              http://doi.org/10.1002/biot.200900004
               http://doi.org/10.1021/cr000108x                29. Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an

           106                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   109   110   111   112   113   114   115   116   117   118   119