Page 114 - IJB-8-4
P. 114
Effect of Bioprinting-Associated Shear Stress and Hydrostatic Pressure
Agarose-type I Collagen Blends Comprise 3D Printability and 18. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
Angio-genesis Potential for Tissue Engineered Substitutes. of Heterogeneous Aortic Valve Conduits with Alginate/
Tissue Eng Part C Methods, 23:604–15. Gelatin Hydrogels. J Biomed Mater Res A, 101:1255–64.
https://doi.org/10.1089/ten.tec.2017.0234 http://doi.org/10.1002/jbm.a.34420
7. Stratesteffen H, Köpf M, Kreimendahl F, et al., 2017, GelMA- 19. Tabriz AG, Hermida MA, Leslie NR, et al., Three-
collagen Blends Enable Drop-on-demand 3D Printablility dimensional Bioprinting of Complex Cell Laden Alginate
and Promote Angiogenesis. Biofabrication, 9:045002. Hydrogel Structures. Biofabrication, 7:045012.
https://doi.org/10.1088/1758-5090/aa857c http://doi.org/10.1088/1758-5090/7/4/045012
8. Blaeser A, Campos DF, Fischer H, 2017, 3D Bioprinting of 20. Papaioannou TG, Stefanadis C, 2005, Vascular Wall Shear
Cell-laden Hydrogels for Advanced Tissue Engineering. Curr Stress: Basic Principles and Methods. Hellenic J Cardiol,
Opin Biomed Eng, 2:58–66. 46:9–15.
https://doi.org/10.1016/j.cobme.2017.04.003 21. Koutsiaris AG, Tachmitzi SV, Batis N, et al., 2007, Volume
9. Simunovic F, Finkenzeller G, 2021, Vascularization Strategies Flow and Wall Shear Stress Quantification in the Human
in Bone Tissue Engineering. Cells, 10:1749. Conjunctival Capillaries and Post-capillary Venules In Vivo.
https://doi.org/10.3390/cells10071749 Biorheology, 44:375–86.
10. Blaeser A, Campos DF, Puster U, et al., 2016, Controlling 22. Reneman RS, Hoeks AP, 2008, Wall Shear Stress as Measured
Shear Stress in 3D-Bioprinting is a Key Factor to Balance In Vivo: Consequences for the Design of the Arterial System.
Printing Resolution and Stem Cell Integrity. Adv Healthc Med Biol Eng Comput, 46:499–507.
Mater, 5:326–33. http://doi.org/10.1007/s11517-008-0330-2
https://doi.org/10.1002/adhm.201500677 23. Mahmoud MM, Serbanovic-Canic J, Feng S, et al., 2017,
11. Jentsch S, Nasehi R, Kuckelkorn C, et al., 2021, Multiscale Shear Stress Induces Endothelial-to-mesenchymal Transition
3D Bioprinting by Nozzle-free Acoustic Droplet Ejection. Via the Transcription Factor Snail. Sci Rep, 7:3375.
Small Methods, 5:e2000971. http://doi.org/10.1038/s41598-017-03532-z
https://doi.org/10.1002/smtd.202000971 24. van der Meer AD, Poot AA, Feijen J, et al., 2010, Analyzing
12. Chand R, Muhire BS, Vijayavenkataraman SS, 2022, Shear Stress-Induced Alignment of Actin Filaments in
Computational Fluid Dynamics Assessment of the Effect Endothelial Cells with a Microfluidic Assay. Biomicrofluidics,
of Bioprinting Parameters in Extrusion Bioprinting. Int J 4:11103.
Bioprint, 8:45-60. http://doi.org/10.1063/1.3366720
http://doi.org/10.18063/ijb.v8i2.545 25. Pang Z, Antonetti DA, Tarbell JM, 2005, Shear Stress
13. Axpe E, Oyen ML, 2016, Applications of Alginate-based Regulates HUVEC Hydraulic Conductivity by Occludin
Bioinks in 3D Bioprinting. Int J Mol Sci, 17:1976. Phosphorylation. Ann Biomed Eng, 33:1536–45.
http://doi.org/10.3390/ijms17121976. http://doi.org/10.1007/s10439-005-7786-0
14. Augst AD, Kong HJ, Mooney DJ, 2006, Alginate Hydrogels 26. Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al., 2015,
as Biomaterials. Macromol Biosci, 6:623–33. Bioprinting of Human Pluripotent Stem Cells and their
http://doi.org/10.1002/mabi.200600069 Directed Differentiation into Hepatocyte-like Cells for the
15. Kuo CK, Ma PX, 2001, Ionically Crosslinked Alginate Generation of Mini-livers in 3D. Biofabrication, 7:044102.
Hydrogels as Scaffolds for Tissue Engineering: Part 1. http://doi.org/10.1088/1758-5090/7/4/044102
Structure, Gelation Rate and Mechanical Properties. 27. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D
Biomaterials, 22:511–21. Bioprinting Human Chondrocytes with Nanocellulose-
http://doi.org/10.1016/s0142-9612(00)00201-5 alginate Bioink for Cartilage Tissue Engineering Applications.
16. Gasperini L, Mano JF, Reis RL, 2014, Natural Polymers Biomacromolecules, 16:1489–96.
for the Microencapsulation of Cells J R Soc Interface, http://doi.org/10.1021/acs.biomac.5b00188
11:20140817. 28. Nair K, Gandhi M, Khalil S, et al., 2009, Characterization
http://doi.org/10.1098/rsif.2014.0817 of Cell Viability during Bioprinting Processes. Biotechnol J,
17. Lee KY, Mooney DJ, 2001, Hydrogels for Tissue Engineering. 4:1168–77.
Chem Rev, 101:1869–79. http://doi.org/10.1002/biot.200900004
http://doi.org/10.1021/cr000108x 29. Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an
106 International Journal of Bioprinting (2022)–Volume 8, Issue 4

