Page 219 - IJB-9-1
P. 219
International Journal of Bioprinting FeS /PCL scaffold for bone regeneration
2
40. Feng W, Fu W-Y, Zhang Y, et al.,. 2004, Effects of Chinese herb 50. Spector M, 1994, Anorganic bovine bone and ceramic
medicine on the biological functions of cultured osteoblasts analogs of bone mineral as implants to facilitate bone
in vitro. Acad J Shanghai Second Med Univ, 24: 542–544. regeneration. Clin Plast Surg, 21(3): 437–444.
41. Chakrapani VY, Gnanamani A, Giridev V, et al., 2012, 51. Li C, Vepari C, Jin H-J, et al., 2006, Electrospun silk-BMP-2
Electrospinning of type I collagen and PCL nanofibers using scaffolds for bone tissue engineering. Biomaterials, 27(16):
acetic acid. J Appl Polym Sci, 125(4): 3221–3227. 3115–3124.
42. Rath R, Subramanian S, Pradeep T, 2000, Surface chemical 52. Riley EH, Lane JM, Urist MR, et al., 1996, Bone
studies on pyrite in the presence of polysaccharide-based morphogenetic protein-2: Biology and applications.
flotation depressants. J Colloid Interface Sci, 229(1): 82–91. Clin Orthop Relat Res, 324: 39–46.
43. Lu J, Flautre B, Anselme K, et al., 1999, Role of interconnections 53. Kanczler J, Oreffo R, 2008, Osteogenesis and angiogenesis: The
in porous bioceramics on bone recolonization in vitro and potential for engineering bone. Eur Cells Mater, 15(2): 100–114.
in vivo. J Mater Sci Mater Med, 10(2): 111–120.
54. Zhu S, Bennett S, Kuek V, et al., 2020, Endothelial cells
44. Bettinger CJ, Langer R, Borenstein JT, 2009, Engineering produce angiocrine factors to regulate bone and cartilage
substrate topography at the micro‐and nanoscale to control via versatile mechanisms. Theranostics, 10(13): 5957.
cell function. Angew Chem Int Ed, 48(30): 5406–5415.
55. Köllmer M, Buhrman JS, Zhang Y, et al., 2013, Markers are
45. Loesberg W, Te Riet J, Van Delft F, et al., 2007, The threshold shared between adipogenic and osteogenic differentiated
at which substrate nanogroove dimensions may influence mesenchymal stem cells. J Dev Biol Tissue Eng, 5(2): 18.
fibroblast alignment and adhesion. Biomaterials, 28(27): 56. Franceschi R, 1999, The developmental control of osteoblast-
3944–3951.
specific gene expression: Role of specific transcription
46. Ivirico JE, Salmeron‐Sanchez M, Ribelles JG, et al., 2009, factors and the extracellular matrix environment.
Proliferation and differentiation of goat bone marrow Crit Rev Oral Biol Med, 10(1): 40–57.
stromal cells in 3D scaffolds with tunable hydrophilicity. 57. Thurner PJ, Chen CG, Ionova-Martin S, et al., 2010,
J Biomed Mater Res Part B Appl Biomater, 91(1): 277–286.
Osteopontin deficiency increases bone fragility but preserves
47. Jansen EJ, Sladek RE, Bahar H, et al., 2005, Hydrophobicity bone mass. Bone, 46(6): 1564–1573.
as a design criterion for polymer scaffolds in bone tissue 58. Poundarik AA, Diab T, Sroga GE, et al., 2012, Dilatational
engineering. Biomaterials, 26(21): 4423–4431.
band formation in bone. Proc Natl Acad Sci, 109(47):
48. Deng Y, Liu X, Xu A, et al., 2015, Effect of surface 19178–19183.
roughness on osteogenesis in vitro and osseointegration 59. Wang Y, Wan C, Deng L, et al., 2007, The hypoxia-inducible
in vivo of carbon fiber-reinforced polyetheretherketone– factor α pathway couples angiogenesis to osteogenesis
nanohydroxyapatite composite. Int J Nanomed, 10: 1425.
during skeletal development. J Clin Investig, 117(6):
49. Salgado AJ, Coutinho OP, Reis RL, 2004, Bone tissue 1616–1626.
engineering: state of the art and future trends. Macromol
Biosci, 4(8): 743–765.
V
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023) 211 https://doi.org/10.18063/ijb.v9i1.636

