Page 53 - IJB-9-1
P. 53

International Journal of Bioprinting                        Effect of ionic crosslinking on composite membranes


               https://doi.org/10.1021/acs.biomac.5b00188         https://doi.org/10.7150/ijms.41155

            6.   Nguyen D, Hägg DA, Forsman A,  et al., 2017, Cartilage   17.  Li Y, Xu Y, Liu Y, et al., 2019, Decellularized cartilage matrix
               tissue engineering by the 3d bioprinting of ips cells in a   scaffolds with laser-machined micropores for cartilage
               nanocellulose/alginate bioink. Sci Rep, 7: 658.    regeneration and articular cartilage repair. Mater Sci Eng C
                                                                  Mater Biol Appl, 105: 110139.
            7.   Tan Z, Parisi C, Di Silvio L,  et al., 2017, Cryogenic 3D
               printing of super soft hydrogels. Sci Rep, 7: 16293.     https://doi.org/10.1016/j.msec.2019.110139
               https://doi.org/10.1038/s41598-017-16668-9      18.  Wang D, Zhu Y, Huang Y,  et al., 2021, Pancreatic
                                                                  extracellular matrix/alginate hydrogels provide a supportive
            8.   Gao Q, Kim BS, Gao G, 2021, Advanced strategies for   microenvironment for insulin-producing cells.  ACS
               3D bioprinting of tissue and organ analogs using alginate   Biomater Sci Eng, 7: 3793–3805.
               hydrogel bioinks. Mar Drugs, 19: 708.
                                                                  https://doi.org/10.1021/acsbiomaterials.1c00269
               https://doi.org/10.3390/md19120708
                                                               19.  Hwang  TI,  Moon  JY,  Kim  JI,  et al.,  2020,  Fabrication  of
            9.   Chen YW, Hsieh DJ, Periasamy S, 2021, Development of a   three-dimensional alginate porous scaffold incorporated
               decellularized  porcine bone graft by  supercritical carbon   with decellularized cornu cervi pantotrichum particle for
               dioxide extraction technology for bone regeneration.   bone tissue engineering. J Nanosci Nanotechnol, 20: 5356–
               J Tissue Eng Regen Med, 15: 401–404.               5359.
               https://doi.org/10.1002/term.3181                  https://doi.org/10.1166/jnn.2020.17676
            10.  Seo  Y,  Jung  Y,  Kim  SH,  2018,  Decellularized  heart  ecm   20.  Luo  B,  Loh  QL,  Chong  MT,  et al.,  2014,  Bioactivated
               hydrogel using supercritical carbon dioxide for improved   protein-based porous microcarriers for tissue engineering
               angiogenesis. Acta Biomater, 67: 270–281.          applications. J Mater Chem B, 2: 7795–7803.
               https://doi.org/10.1016/j.actbio.2017.11.046       https://doi.org/10.1039/C4TB00846D
            11.  Ma JZ, Hou XY, Gao DG, 2014, Greener approach to   21.  Zhang YS, Haghiashtiani G, Hübscher T,  et al., 2021, 3D
               efficient leather soaking process: role of enzymes and their   extrusion bioprinting. Nat Rev Methods Primers, 1: 75.
               synergistic effect. J Clean Prod, 1: 226–232.
                                                               22.  Lee  JM,  Yeong  WY,  2020,  Engineering  macroscale  cell
            12.  Kim BS, Kim JU, So KH,  et al., 2021, Supercritical fluid-  alignment through coordinated toolpath design using
               based decellularization technologies for regenerative   support-assisted 3D bioprinting.  J R Soc Interface, 17:
               medicine applications, Macromol Biosc, 21: e2100160.  20200294.
               https://doi.org/10.1002/mabi.202100160             https://doi.org/10.1098/rsif.2020.0294
            13.  Huang CC, Liu CY, Huang CY, et al., 2014, Carbodiimide   23.  Wang JK, Luo B, Guneta V, et al., 2017, Supercritical carbon
               cross-linked  and  biodegradation-controllable  small  dioxide extracted extracellular matrix material from adipose
               intestinal submucosa sheets. Biomed Mater Eng, 24: 1959–  tissue. Mat Sci Eng C Mater Biol Appl, 75: 349–358.
               1967.                                              https://doi.org/10.1016/j.msec.2017.02.002
               https://doi.org/10.3233/BME-141005              24.  Sun D, Liu Y, Wang H, 2018, Novel decellularized liver
            14.  Liu YW, Huang CC, Wang YY,  et  al., 2021, Biological   matrix-alginate hybrid gel beads for the 3D culture of
               evaluations of decellularized extracellular matrix collagen   hepatocellular carcinoma cells. Int J Biol Macromol, 109:
               microparticles prepared based on plant enzymes and   1154–1163.
               aqueous two-phase method. Regen Biomater, 8: rbab002.     https://doi.org/10.1016/j.ijbiomac.2017.11.103
               https://doi.org/10.1093/rb/rbab002              25.  Adochitei A, Drochioiu G, 2011, Rapid characterization of
            15.  Huang CC, 2022, Newly designed decellularized scaffolds   peptide secondary structure by ftir spectroscopy. Rev Roum
               for scaffold-based gene therapy from elastic cartilages via   Chim, 56: 783–791.
               supercritical carbon dioxide fluid and alkaline/protease   26.  Chen K, Li J, Zhao W, et al., 2022, Physicochemical properties
               treatments. Curr Gene Ther, 22: 162–167.           of collagen from the  bone of  harpadon  nehereus and its
               https://doi.org/10.2174/1566523219666210618151843  protective effects against angiotensin ii-induced injury
                                                                  in human umbilical vein endothelial cells. ACS Omega, 7:
            16.  Chou PR, Lin YN, Wu SH, et al., 2020, Supercritical carbon   23412–23420.
               dioxide-decellularized porcine acellular dermal matrix
               combined with autologous adipose-derived stem cells: its      https://doi.org/10.1021/acsomega.2c01739
               role in accelerated diabetic wound healing. Int J Med Sci, 17:   27.  Zhao  WH, Chi CF,  Zhao  YQ,  et al.,  2018, Preparation,
               354–367.                                           physicochemical and antioxidant properties of acid- and



            Volume 9 Issue 1 (2023)                         45                       http://doi.org/10.18063/ijb.v9i1.625
   48   49   50   51   52   53   54   55   56   57   58