Page 312 - IJB-9-2
P. 312

International Journal of Bioprinting                 Zn-doped coatings with osteogenic and antibacterial properties


               24: 2101510.                                    24.  Wang Q, Tang P, Ge X, et al., 2018, Experimental and simulation
                                                                  studies  of strontium/zinc-codoped hydroxyapatite  porous
               https://doi.org/10.1002/adem.202101510
                                                                  scaffolds  with  excellent  osteoinductivity  and  antibacterial
            14.  Sierra MA, Casarrubios L, de la Torre MC, 2019, Bio-  activity. Appl Surf Sci, 462: 118–126.
               organometallic derivatives of antibacterial drugs. Chemistry,
               25: 7232–7242.                                     https://doi.org/10.1016/j.apsusc.2018.08.068
                                                               25.  Campoccia  D,  Montanaro  L,  Arciola  CR,  2006,  The
               https://doi.org/10.1002/chem.201805985
                                                                  significance of infection related to orthopedic devices and
            15.  Li B, Webster TJ, 2018, Bacteria antibiotic resistance:   issues of antibiotic resistance. Biomaterials, 27: 2331–2339.
               New  challenges  and  opportunities  for  implant-associated      https://doi.org/10.1016/j.biomaterials.2005.11.044
               orthopedic infections. J Orthop Res, 36: 22–32.
                                                               26.  Gasik M, 2017, Understanding biomaterial-tissue interface
               https://doi.org/10.1002/jor.23656
                                                                  quality: Combined in vitro evaluation. Sci Technol Adv Mat,
            16.  Godoy-Gallardo M, Eckhard U, Delgado LM, et al., 2021,   18: 550–562.
               Antibacterial approaches in tissue engineering using metal      https://doi.org/10.1080/14686996.2017.1348872
               ions and nanoparticles: From mechanisms to applications.
               Bioact Mater, 6: 4470–4490.                     27.  Islam  MM, Shahruzzaman M, Biswas  S,  et al., 2020,
                                                                  Chitosan based bioactive materials in tissue engineering
               https://doi.org/10.1016/j.bioactmat.2021.04.033    applications-A review. Bioact Mater, 5: 164–183.
            17.  Saidin S, Jumat MA, Amin NA, et al., 2021, Organic and      https://doi.org/10.1016/j.bioactmat.2020.01.012
               inorganic antibacterial approaches in combating bacterial
               infection for biomedical application. Mater Sci Eng C Mater,   28.  Aguero L, Alpdagtas S, Ilhan E, et al., 2021, Functional role
               118: 111382.                                       of crosslinking in alginate scaffold for drug delivery and
                                                                  tissue engineering: A review. Eur Polym J, 160: 110807.
               https://doi.org/10.1016/j.msec.2020.111382
                                                                  https://doi.org/10.1016/j.eurpolymj.2021.110807
            18.  Bhattacharjee A, Gupta A, Verma M, et al., 2019, Site-specific
               antibacterial efficacy and cyto/hemo-compatibility of zinc   29.  Huang C, Fang G, Zhao Y,  et al., 2019, Bio-inspired
               substituted hydroxyapatite. Ceram Int, 45: 12225–12233.   nanocomposite by layer-by-layer coating of chitosan/
                                                                  hyaluronic acid multilayers on a hard nanocellulose-
               https://doi.org/10.1016/j.ceramint.2019.03.132     hydroxyapatite matrix. Carbohyd Polym, 222: 115036.
            19.  Yang Y, Zan J, Shuai Y,  et al., 2022,  In Situ growth of a      https://doi.org/10.1016/j.carbpol.2019.115036
               metal-organic framework on graphene oxide for the chemo-
               photothermal therapy of bacterial infection in bone repair.   30.  Wang R, Sun L, Zhu X, et al., 2022, Carbon nanotube‐based
               ACS Appl Mater Inter, 14: 21996–22005.             strain sensors: Structures, fabrication, and applications. Adv
                                                                  Mater Technol, 2022: 2200855.
               https://doi.org/10.1021/acsami.2c0484121996
                                                                  https://doi.org/10.1002/admt.202200855
            20.  Wätjen W, Haase H, Biagioli M, et al., 2002, Induction of
               apoptosis in mammalian cells by cadmium and zinc. Environ   31.  Hernandez-Gonzalez AC, Tellez-Jurado L, Rodriguez-
               Health Persp, 110: 865–867.                        Lorenzo LM, 2020, Alginate hydrogels  for bone tissue
                                                                  engineering, from injectables to bioprinting: A  review.
               https://doi.org/10.1289/ehp.110-1241262            Carbohyd Polym, 229: 115514.
            21.  Lu T, Yuan X, Zhang L, et al., 2021, High throughput synthesis      https://doi.org/10.1016/j.carbpol.2019.115514
               and screening of zinc-doped biphasic calcium phosphate for
               bone regeneration. Appl Mater Today, 25: 101225.   32.  Jiao C, Xie D, He Z, et al., 2022, Additive manufacturing
                                                                  of Bio-inspired ceramic bone Scaffolds: Structural Design,
               https://doi.org/10.1016/j.apmt.2021.101225         mechanical properties and biocompatibility. Mater Design,
            22.  Shen J, Chen B, Zhai X, et al., 2021, Stepwise 3D-spatio-temporal   217: 110610.
               magnesium cationic niche: Nanocomposite scaffold mediated      https://doi.org/10.1016/j.matdes.2022.110610
               microenvironment  for  modulating  intramembranous
               ossification, Bioact Mater, 6: 503–519.         33.  Liang  H, Yang  Y,  Xie  D,  et al.,  2019, Trabecular-like
                                                                  Ti-6Al-4V scaffolds for orthopedic: Fabrication by selective
               https://doi.org/10.1016/j.bioactmat.2020.08.025    laser melting and  in vitro biocompatibility.  J  Mater Sci
                                                                  Technol, 35: 1284–1297.
            23.  Ullah I, Siddiqui MA, Kolawole SK, et al., 2020, Synthesis,
               characterization and  in vitro evaluation of zinc and      https://doi.org/10.1016/j.jmst.2019.01.012
               strontium binary doped hydroxyapatite for biomedical   34.  He H, Lian J, Chen C,  et al., 2022, Enabling multi-
               application. Ceram Int, 46: 14448–14459.
                                                                  chemisorption sites on carbon nanofibers cathodes by an
               https://doi.org/10.1016/j.ceramint.2020.02.242     in-situ  exfoliation  strategy  for  high-performance  Zn-Ion


            Volume 9 Issue 2 (2023)                        304                      https://doi.org/10.18063/ijb.v9i2.668
   307   308   309   310   311   312   313   314   315   316   317