Page 312 - IJB-9-2
P. 312
International Journal of Bioprinting Zn-doped coatings with osteogenic and antibacterial properties
24: 2101510. 24. Wang Q, Tang P, Ge X, et al., 2018, Experimental and simulation
studies of strontium/zinc-codoped hydroxyapatite porous
https://doi.org/10.1002/adem.202101510
scaffolds with excellent osteoinductivity and antibacterial
14. Sierra MA, Casarrubios L, de la Torre MC, 2019, Bio- activity. Appl Surf Sci, 462: 118–126.
organometallic derivatives of antibacterial drugs. Chemistry,
25: 7232–7242. https://doi.org/10.1016/j.apsusc.2018.08.068
25. Campoccia D, Montanaro L, Arciola CR, 2006, The
https://doi.org/10.1002/chem.201805985
significance of infection related to orthopedic devices and
15. Li B, Webster TJ, 2018, Bacteria antibiotic resistance: issues of antibiotic resistance. Biomaterials, 27: 2331–2339.
New challenges and opportunities for implant-associated https://doi.org/10.1016/j.biomaterials.2005.11.044
orthopedic infections. J Orthop Res, 36: 22–32.
26. Gasik M, 2017, Understanding biomaterial-tissue interface
https://doi.org/10.1002/jor.23656
quality: Combined in vitro evaluation. Sci Technol Adv Mat,
16. Godoy-Gallardo M, Eckhard U, Delgado LM, et al., 2021, 18: 550–562.
Antibacterial approaches in tissue engineering using metal https://doi.org/10.1080/14686996.2017.1348872
ions and nanoparticles: From mechanisms to applications.
Bioact Mater, 6: 4470–4490. 27. Islam MM, Shahruzzaman M, Biswas S, et al., 2020,
Chitosan based bioactive materials in tissue engineering
https://doi.org/10.1016/j.bioactmat.2021.04.033 applications-A review. Bioact Mater, 5: 164–183.
17. Saidin S, Jumat MA, Amin NA, et al., 2021, Organic and https://doi.org/10.1016/j.bioactmat.2020.01.012
inorganic antibacterial approaches in combating bacterial
infection for biomedical application. Mater Sci Eng C Mater, 28. Aguero L, Alpdagtas S, Ilhan E, et al., 2021, Functional role
118: 111382. of crosslinking in alginate scaffold for drug delivery and
tissue engineering: A review. Eur Polym J, 160: 110807.
https://doi.org/10.1016/j.msec.2020.111382
https://doi.org/10.1016/j.eurpolymj.2021.110807
18. Bhattacharjee A, Gupta A, Verma M, et al., 2019, Site-specific
antibacterial efficacy and cyto/hemo-compatibility of zinc 29. Huang C, Fang G, Zhao Y, et al., 2019, Bio-inspired
substituted hydroxyapatite. Ceram Int, 45: 12225–12233. nanocomposite by layer-by-layer coating of chitosan/
hyaluronic acid multilayers on a hard nanocellulose-
https://doi.org/10.1016/j.ceramint.2019.03.132 hydroxyapatite matrix. Carbohyd Polym, 222: 115036.
19. Yang Y, Zan J, Shuai Y, et al., 2022, In Situ growth of a https://doi.org/10.1016/j.carbpol.2019.115036
metal-organic framework on graphene oxide for the chemo-
photothermal therapy of bacterial infection in bone repair. 30. Wang R, Sun L, Zhu X, et al., 2022, Carbon nanotube‐based
ACS Appl Mater Inter, 14: 21996–22005. strain sensors: Structures, fabrication, and applications. Adv
Mater Technol, 2022: 2200855.
https://doi.org/10.1021/acsami.2c0484121996
https://doi.org/10.1002/admt.202200855
20. Wätjen W, Haase H, Biagioli M, et al., 2002, Induction of
apoptosis in mammalian cells by cadmium and zinc. Environ 31. Hernandez-Gonzalez AC, Tellez-Jurado L, Rodriguez-
Health Persp, 110: 865–867. Lorenzo LM, 2020, Alginate hydrogels for bone tissue
engineering, from injectables to bioprinting: A review.
https://doi.org/10.1289/ehp.110-1241262 Carbohyd Polym, 229: 115514.
21. Lu T, Yuan X, Zhang L, et al., 2021, High throughput synthesis https://doi.org/10.1016/j.carbpol.2019.115514
and screening of zinc-doped biphasic calcium phosphate for
bone regeneration. Appl Mater Today, 25: 101225. 32. Jiao C, Xie D, He Z, et al., 2022, Additive manufacturing
of Bio-inspired ceramic bone Scaffolds: Structural Design,
https://doi.org/10.1016/j.apmt.2021.101225 mechanical properties and biocompatibility. Mater Design,
22. Shen J, Chen B, Zhai X, et al., 2021, Stepwise 3D-spatio-temporal 217: 110610.
magnesium cationic niche: Nanocomposite scaffold mediated https://doi.org/10.1016/j.matdes.2022.110610
microenvironment for modulating intramembranous
ossification, Bioact Mater, 6: 503–519. 33. Liang H, Yang Y, Xie D, et al., 2019, Trabecular-like
Ti-6Al-4V scaffolds for orthopedic: Fabrication by selective
https://doi.org/10.1016/j.bioactmat.2020.08.025 laser melting and in vitro biocompatibility. J Mater Sci
Technol, 35: 1284–1297.
23. Ullah I, Siddiqui MA, Kolawole SK, et al., 2020, Synthesis,
characterization and in vitro evaluation of zinc and https://doi.org/10.1016/j.jmst.2019.01.012
strontium binary doped hydroxyapatite for biomedical 34. He H, Lian J, Chen C, et al., 2022, Enabling multi-
application. Ceram Int, 46: 14448–14459.
chemisorption sites on carbon nanofibers cathodes by an
https://doi.org/10.1016/j.ceramint.2020.02.242 in-situ exfoliation strategy for high-performance Zn-Ion
Volume 9 Issue 2 (2023) 304 https://doi.org/10.18063/ijb.v9i2.668

