Page 313 - IJB-9-2
P. 313

International Journal of Bioprinting                 Zn-doped coatings with osteogenic and antibacterial properties


               hybrid capacitors. Nanomicro Lett, 14: 106.        and insight of the emergence of hydroxyapatite-ZnO
                                                                  nanocomposite. Mater Charact, 176: 111107.
               https://doi.org/10.1007/s40820-022-00839-z
            35.  Khan MU, Razak SI, Ansari MN, et al., 2021, Development      https://doi.org/10.1016/j.matchar.2021.111107
               of biodegradable bio-based composite for bone tissue   44.  Chen X, Zhang L, Liu X,  et al., 2012, Preparation
               engineering: Synthesis, characterization and  in vitro   and properties of biodegradable composites derived
               biocompatible evaluation. Polymers (Basel), 13: 3611.   from poly(lactide-co-glycolide), poly(L-lactide), and
               https://doi.org/10.3390/polym13213611              nanohydroxyapatite. J Macromol Sci B, 52: 462–475.
            36.  Li D, Liu P, Hao F, et al., 2022, Preparation and application      https://doi.org/10.1080/00222348.2012.712007
               of silver/chitosan-sepiolite materials with antimicrobial   45.  Mohajernia S, Hejazi S, Eslami A,  et al., 2015, Modified
               activities and low cytotoxicity.  Int J Biol Macromol,   nanostructured hydroxyapatite coating to control the
               210: 337–349.                                      degradation of magnesium alloy AZ31 in simulated body
               https://doi.org/10.1016/j.ijbiomac.2022.05.015     fluid. Surf Coat Tech, 263: 54–60.
            37.  Ding H, Peng X, Yu X, et al., 2022, The construction of a self-     https://doi.org/10.1016/j.surfcoat.2014.12.059
               assembled coating with chitosan-grafted reduced graphene   46.  Shen Y, Liu W, Wen C,  et al., 2012, Bone regeneration:
               oxide on porous calcium polyphosphate scaffolds for bone   Importance of local pH-strontium-doped borosilicate
               tissue engineering. Biomed Mater, 17: 045016.      scaffold. J Mater Chem, 22: 8662–8670.
               https://doi.org/10.1088/1748-605X/ac6eab
                                                                  https://doi.org/10.1039/c2jm16141a
            38.  Zhang R, Liu X, Xiong Z,  et al., 2018, Novel micro/  47.  Rokusek D, Davitt C, Bandyopadhyay A,  et  al., 2005,
               nanostructured TiO2/ZnO coating with antibacterial   Interaction of human osteoblasts with bioinert and bioactive
               capacity and cytocompatibility. Ceram Int, 44: 9711–9719.
               https://doi.org/10.1016/j.ceramint.2018.02.202     ceramic substrates. J Biomed Mater Res A, 75: 588–594.
                                                                  https://doi.org/10.1002/jbm.a.30459
            39.  Aljohani W, Ullah MW, Zhang X, et al., 2018, Bioprinting
               and its applications in tissue engineering and regenerative   48.  Lian JB, Stein GS, 1992, Concepts of osteoblast growth
               medicine. Int J Biol Macromol, 107: 261–275.       and differentiation: basis for modulation of bone cell
               https://doi.org/10.1016/j.ijbiomac.2017.08.171     development and tissue formation. Crit Rev Oral Biol Med,
                                                                  3: 269–305.
            40.  Bian T, Wang L, Xing H, 2021, Preparation and biological
               assessment  of  a  ZrO2-based  bone  scaffold  coated  with      https://doi.org/10.1177/10454411920030030501
               hydroxyapatite and bioactive glass composite. Mater Chem   49.  Silva AS, Santos LF, Mendes MC, et al., 2020, Multi-layer
               Phys, 267: 124616.                                 pre-vascularized magnetic cell sheets for bone regeneration.
               https://doi.org/10.1016/j.matchemphys.2021.124616  Biomaterials, 231: 119664.
            41.  Khosrowshahi  A,  Khoshfetrat  AB,  Khosrowshahi  YB,      https://doi.org/10.1016/j.biomaterials.2019.119664
               et  al., 2021, Cobalt content modulates characteristics and   50.  Gregory CA, Gunn WG, Peister A, et al., 2004, An Alizarin
               osteogenic properties of cobalt-containing hydroxyapatite   red-based assay of mineralization by adherent cells in culture:
               in in-vitro milieu. Mater Today Commun, 27: 102392.   Comparison with cetylpyridinium chloride extraction. Anal
               https://doi.org/10.1016/j.mtcomm.2021.102392       Biochem, 329: 77–84.
            42.  Wang S, Liu L, Zhou X,  et al., 2019, Effect of strontium-     https://doi.org/10.1016/j.ab.2004.02.002
               containing on the properties of Mg-doped wollastonite   51.  Wang X, Liu S, Li M, et al., 2016, The synergistic antibacterial
               bioceramic scaffolds. Biomed Eng Online, 18: 119.   activity and mechanism of multicomponent metal ions-
               https://doi.org/10.1186/s12938-019-0739-x          containing aqueous solutions against Staphylococcus aureus.
                                                                  J Inorg Biochem, 163: 214–220.
            43.  Rajkumar P, Sarma BK, 2021, Role of Zn and Mg substitutions
               on the mechanical behaviour of biomimetic hydroxyapatite      https://doi.org/10.1016/j.jinorgbio.2016.07.019














            Volume 9 Issue 2 (2023)                        305                      https://doi.org/10.18063/ijb.v9i2.668
   308   309   310   311   312   313   314   315   316   317   318