Page 337 - IJB-9-2
P. 337
International Journal of Bioprinting Engineered EVs increase viability of 3D printed cardiomyocytes
6. Jabbour RJ, Owen TJ, Pandey P, et al., 2021, In vivo grafting intracellular plasmid DNA delivery. Mol Ther - Nucleic
of large engineered heart tissue patches for cardiac repair. Acids, 16:378–390.
JCI Insight, 6(15):e144068.
21. Oduk Y, Zhu W, Kannappan R, et al., 2018, VEGF
7. Gao L, Gregorich ZR, Wuqiang Z, et al., 2018, Large nanoparticles repair the heart after myocardial infarction.
cardiac muscle patches engineered from human induced- Am J Physiol Heart Circ Physiol, 314(2):H278–H284.
pluripotent stem cell–derived cardiac cells improve 22. Liu B, Lee BW, Nakanishi K, et al., 2018, Cardiac recovery via
recovery from myocardial infarction in swine. Circulation, extended cell-free delivery of extracellular vesicles secreted
137(16):1712–1730.
by cardiomyocytes derived from induced pluripotent stem
8. Riegler J, Tiburcy M, Ebert A, et al.2015, Human engineered cells. Nat Biomed Eng, 2(5):293.
heart muscles engraft and survive long term in a rodent 23. Wang LL, Liu Y, Chung JJ, et al., 2017, Sustained
myocardial infarction model. Circ Res, 117(8):720–730.
miRNA delivery from an injectable hydrogel promotes
9. Shadrin IY, Allen BW, Qian Y, et al., 2017, Cardiopatch cardiomyocyte proliferation and functional regeneration
platform enables maturation and scale-up of human after ischaemic injury. Nat Biomed Eng, 1(12):983.
pluripotent stem cell-derived engineered heart tissues. Nat 24. Montgomery RL, van Rooij E, 2011, Therapeutic advances
Commun, 8(1):1825.
in microRNA targeting. J Cardiovasc Pharmacol, 57(1):1–7.
10. Fleischer S, Feiner R, Dvir T, 2017, Cutting-edge platforms in 25. Muthiah M, Park IK, Cho CS, 2013, Nanoparticle-mediated
cardiac tissue engineering. Curr Opin Biotechnol, 47:23–29.
delivery of therapeutic genes: Focus on miRNA therapeutics.
11. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting Expert Opin Drug Deliv [Internet], 10(9):1259–1273.
of collagen to rebuild components of the human heart. https://doi.org/10.1517/17425247.2013.798640
Science (80- ), 365(6452):482–487.
26. Barwari T, Joshi A, Mayr M, 2016, MicroRNAs in
12. Bejleri D, Streeter BW, Nachlas ALY, et al., 2018, A bioprinted cardiovascular disease. J Am Coll Cardiol, 68(23):2577–2584.
cardiac patch composed of cardiac-specific extracellular
matrix and progenitor cells for heart repair. Adv Healthc 27. Eulalio A, Mano M, Dal Ferro M, et al., 2012, Functional
Mater, 7(23):1800672. screening identifies miRNAs inducing cardiac regeneration.
Nature, 492(7429):376.
13. Skardal A, Devarasetty M, Kang HW, et al., 2015, A hydrogel
bioink toolkit for mimicking native tissue biochemical and 28. Torrini C, Cubero RJ, Dirkx E, et al., 2019, Common
mechanical properties in bioprinted tissue constructs. Acta regulatory pathways mediate activity of microRNAs
Biomater, 25:24–34. inducing cardiomyocyte proliferation. Cell Rep, 27(9):2759–
2771.
14. Placone JK, Engler AJ, 2018, Recent advances in extrusion‐
based 3D printing for biomedical applications. Adv Healthc 29. Shatseva T, Lee DY, Deng Z, et al., 2011, MicroRNA miR-
Mater, 7(8):1701161. 199a-3p regulates cell proliferation and survival by targeting
caveolin-2. J Cell Sci, 124(16):2826 LP – 2836.
15. Koti P, Muselimyan N, Mirdamadi E, et al., 2019. Use of
GelMA for 3D printing of cardiac myocytes and fibroblasts. 30. Balaj L, Atai NA, Chen W, et al., 2015, Heparin affinity
J 3D Print Med, 3(1):11–22. purification of extracellular vesicles. Sci Rep [Internet],
5:10266. Available from: https://www.ncbi.nlm.nih.gov/
16. Das S, Kim SW, Choi YJ, et al., 2019, Decellularized pubmed/25988257
extracellular matrix bioinks and the external stimuli to
enhance cardiac tissue development in vitro. Acta Biomater, 31. Simons M, Raposo G, 2009, Exosomes–vesicular carriers
95:188–200. for intercellular communication. Curr Opin Cell Biol,
21(4):575–581.
17. Malekpour A, Chen X, 2022, Printability and cell viability in
extrusion-based bioprinting from experimental, computational, 32. Webber J, Steadman R, Mason MD, et al., 2010, Cancer
and machine learning views. J Funct Biomater, 13(2):40. exosomes trigger fibroblast to myofibroblast differentiation.
Cancer Res, 70(23):9621–9630.
18. Ruvinov E, Leor J, Cohen S, 2011, The promotion of
myocardial repair by the sequential delivery of IGF-1 and 33. Costa-Silva B, Aiello NM, Ocean AJ, et al., 2015, Pancreatic
HGF from an injectable alginate biomaterial in a model of cancer exosomes initiate pre-metastatic niche formation in
acute myocardial infarction. Biomaterials, 32(2):565–578. the liver. Nat Cell Biol, 17(6):816.
19. Bejerano T, Etzion S, Elyagon S, et al., 2018, Nanoparticle 34. Emanueli C, Shearn AIU, Angelini GD, et al., 2015, Exosomes
delivery of miRNA-21 mimic to cardiac macrophages and exosomal miRNAs in cardiovascular protection and
improves myocardial remodeling after myocardial repair. Vasc Pharmacol, 71:24–30.
infarction. Nano Lett, 18(9):5885–5891. 35. Zhang Y, Liu D, Chen X, et al., 2010, Secreted monocytic
20. Goldshtein M, Shamir S, Vinogradov E, et al., 2019, miR-150 enhances targeted endothelial cell migration. Mol
Co-assembled Ca alginate-sulfate nanoparticles for Cell, 39(1):133–144.
2+
Volume 9 Issue 2 (2023) 329 https://doi.org/10.18063/ijb.v9i2.670

