Page 337 - IJB-9-2
P. 337

International Journal of Bioprinting                Engineered EVs increase viability of 3D printed cardiomyocytes



            6.   Jabbour RJ, Owen TJ, Pandey P, et al., 2021, In vivo grafting   intracellular plasmid DNA  delivery.  Mol Ther - Nucleic
               of large engineered heart tissue patches for cardiac repair.   Acids, 16:378–390.
               JCI Insight, 6(15):e144068.
                                                               21.   Oduk Y, Zhu W, Kannappan R,  et al., 2018, VEGF
            7.   Gao L, Gregorich ZR, Wuqiang Z,  et al., 2018, Large   nanoparticles repair the heart after myocardial infarction.
               cardiac muscle patches engineered from human induced-  Am J Physiol Heart Circ Physiol, 314(2):H278–H284.
               pluripotent stem cell–derived cardiac cells improve   22.   Liu B, Lee BW, Nakanishi K, et al., 2018, Cardiac recovery via
               recovery from myocardial infarction in swine. Circulation,   extended cell-free delivery of extracellular vesicles secreted
               137(16):1712–1730.
                                                                  by cardiomyocytes derived from induced pluripotent stem
            8.   Riegler J, Tiburcy M, Ebert A, et al.2015, Human engineered   cells. Nat Biomed Eng, 2(5):293.
               heart muscles engraft and survive long term in a rodent   23.   Wang  LL,  Liu  Y,  Chung  JJ,  et al.,  2017,  Sustained
               myocardial infarction model. Circ Res, 117(8):720–730.
                                                                  miRNA delivery from an injectable hydrogel promotes
            9.   Shadrin  IY,  Allen  BW,  Qian  Y,  et al.,  2017,  Cardiopatch   cardiomyocyte proliferation and functional regeneration
               platform enables maturation and scale-up of human   after ischaemic injury. Nat Biomed Eng, 1(12):983.
               pluripotent stem cell-derived engineered heart tissues. Nat   24.   Montgomery RL, van Rooij E, 2011, Therapeutic advances
               Commun, 8(1):1825.
                                                                  in microRNA targeting. J Cardiovasc Pharmacol, 57(1):1–7.
            10.   Fleischer S, Feiner R, Dvir T, 2017, Cutting-edge platforms in   25.   Muthiah M, Park IK, Cho CS, 2013, Nanoparticle-mediated
               cardiac tissue engineering. Curr Opin Biotechnol, 47:23–29.
                                                                  delivery of therapeutic genes: Focus on miRNA therapeutics.
            11.   Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting   Expert Opin Drug Deliv [Internet], 10(9):1259–1273.
               of collagen to rebuild components of the human heart.   https://doi.org/10.1517/17425247.2013.798640
               Science (80- ), 365(6452):482–487.
                                                               26.   Barwari T, Joshi A, Mayr M, 2016, MicroRNAs in
            12.   Bejleri D, Streeter BW, Nachlas ALY, et al., 2018, A bioprinted   cardiovascular disease. J Am Coll Cardiol, 68(23):2577–2584.
               cardiac patch composed of cardiac-specific extracellular
               matrix and progenitor cells for heart repair.  Adv Healthc   27.   Eulalio A, Mano M, Dal Ferro M, et al., 2012, Functional
               Mater, 7(23):1800672.                              screening identifies miRNAs inducing cardiac regeneration.
                                                                  Nature, 492(7429):376.
            13.   Skardal A, Devarasetty M, Kang HW, et al., 2015, A hydrogel
               bioink toolkit for mimicking native tissue biochemical and   28.   Torrini C, Cubero RJ, Dirkx E,  et al., 2019, Common
               mechanical properties in bioprinted tissue constructs. Acta   regulatory pathways mediate activity of microRNAs
               Biomater, 25:24–34.                                inducing cardiomyocyte proliferation. Cell Rep, 27(9):2759–
                                                                  2771.
            14.   Placone JK, Engler AJ, 2018, Recent advances in extrusion‐
               based 3D printing for biomedical applications. Adv Healthc   29.   Shatseva T, Lee DY, Deng Z, et al., 2011, MicroRNA miR-
               Mater, 7(8):1701161.                               199a-3p regulates cell proliferation and survival by targeting
                                                                  caveolin-2. J Cell Sci, 124(16):2826 LP – 2836.
            15.   Koti P, Muselimyan N, Mirdamadi E,  et al., 2019. Use of
               GelMA for 3D printing of cardiac myocytes and fibroblasts.   30.   Balaj L, Atai NA, Chen W,  et al., 2015, Heparin affinity
               J 3D Print Med, 3(1):11–22.                        purification of extracellular vesicles.  Sci Rep [Internet],
                                                                  5:10266. Available from: https://www.ncbi.nlm.nih.gov/
            16.   Das S, Kim SW, Choi YJ,  et al., 2019, Decellularized   pubmed/25988257
               extracellular  matrix  bioinks  and  the  external  stimuli  to
               enhance cardiac tissue development in vitro. Acta Biomater,   31.   Simons M, Raposo G, 2009, Exosomes–vesicular carriers
               95:188–200.                                        for  intercellular  communication.  Curr  Opin  Cell  Biol,
                                                                  21(4):575–581.
            17.   Malekpour A, Chen X, 2022, Printability and cell viability in
               extrusion-based bioprinting from experimental, computational,   32.   Webber J, Steadman R, Mason MD,  et al., 2010, Cancer
               and machine learning views. J Funct Biomater, 13(2):40.  exosomes trigger fibroblast to myofibroblast differentiation.
                                                                  Cancer Res, 70(23):9621–9630.
            18.   Ruvinov E, Leor J, Cohen S, 2011, The promotion of
               myocardial repair by the sequential delivery of IGF-1 and   33.   Costa-Silva B, Aiello NM, Ocean AJ, et al., 2015, Pancreatic
               HGF from an injectable alginate biomaterial in a model of   cancer exosomes initiate pre-metastatic niche formation in
               acute myocardial infarction. Biomaterials, 32(2):565–578.  the liver. Nat Cell Biol, 17(6):816.
            19.   Bejerano T, Etzion S, Elyagon S, et al., 2018, Nanoparticle   34.   Emanueli C, Shearn AIU, Angelini GD, et al., 2015, Exosomes
               delivery of miRNA-21 mimic to cardiac macrophages   and exosomal miRNAs in cardiovascular protection and
               improves  myocardial remodeling  after  myocardial   repair. Vasc Pharmacol, 71:24–30.
               infarction. Nano Lett, 18(9):5885–5891.         35.   Zhang Y, Liu D, Chen X, et al., 2010, Secreted monocytic
            20.   Goldshtein M, Shamir S, Vinogradov E,  et al., 2019,   miR-150 enhances targeted endothelial cell migration. Mol
               Co-assembled Ca  alginate-sulfate nanoparticles for   Cell, 39(1):133–144.
                             2+

            Volume 9 Issue 2 (2023)                        329                     https://doi.org/10.18063/ijb.v9i2.670
   332   333   334   335   336   337   338   339   340   341   342