Page 338 - IJB-9-2
P. 338

International Journal of Bioprinting                Engineered EVs increase viability of 3D printed cardiomyocytes



            36.   Arslan F, Lai RC, Smeets MB, et al., 2013, Mesenchymal stem   50.   Wang Y, Zhao M, Liu S, et al., 2020, Macrophage-derived
               cell-derived exosomes increase ATP levels, decrease oxidative   extracellular vesicles: Diverse mediators of pathology and
               stress and activate PI3K/Akt pathway to enhance myocardial   therapeutics in multiple diseases. Cell Death Dis, 11(10):924.
               viability and prevent adverse remodeling after myocardial
               ischemia/reperfusion injury. Stem Cell Res, 10(3):301–312.  51.   Hausser J, Syed AP, Selevsek N, et al., 2013, Timescales and
                                                                  bottlenecks in miRNA‐dependent gene regulation. Mol Syst
            37.   Ferguson SW, Wang J, Lee CJ, et al., 2018, The microRNA   Biol, 9(1):711.
               regulatory landscape of MSC-derived exosomes: A systems
               view. Sci Rep, 8(1):1419.                       52.   Zhang Z, Qin YW, Brewer G,  et al., 2012, MicroRNA
                                                                  degradation and turnover: Regulating the regulators. Wiley
            38.   Wu R, Gao W, Yao K,  et al., 2019, Roles of exosomes   Interdiscip Rev RNA, 3(4):593–600.
               derived from immune cells in cardiovascular diseases. Front
               Immunol, 10:648.                                53.   Uygur A, Lee RT, 2016, Mechanisms of cardiac regeneration.
                                                                  Dev Cell, 36(4):362–374.
            39.   Zudaire E, Gambardella L, Kurcz C,  et al., 2011, A
               computational tool for quantitative analysis of vascular   54.   Gangadaran P, Rajendran RL, Oh JM,  et  al., 2020,
               networks. PLoS One, 6(11):e27385.                  Extracellular vesicles derived from macrophage promote
                                                                  angiogenesis in vitro and accelerate new vasculature
            40.   Bondalapati S, Ruvinov E, Kryukov O, et al., 2014, Rapid   formation in vivo. Exp Cell Res, 394(2):112146.
               end‐group modification of polysaccharides for biomaterial
               applications in regenerative medicine.  Macromol Rapid   55.   Hosseinkhani B, Kuypers S, van den Akker NMS, et al., 2018,
               Commun, 35(20):1754–1762.                          Extracellular vesicles work as a functional inflammatory
                                                                  mediator between vascular endothelial cells and immune
            41.   Hinton TJ, Jallerat Q, Palchesko RN,  et al., 2015, Three-  cells. Front Immunol, 9:1789.
               dimensional printing of complex biological structures by
               freeform reversible embedding of suspended hydrogels. Sci   56.   Sapir Y, Kryukov O, Cohen S, 2011, Integration of multiple
               Adv, 1(9):e1500758.                                cell-matrix interactions into alginate scaffolds for promoting
                                                                  cardiac tissue regeneration. Biomaterials, 32(7):1838–1847.
            42.   Ouyang  L, Yao  R,  Zhao Y,  et al.,  2016, Effect of  bioink
               properties on printability and cell viability for 3D bioplotting   57.   Wang C, Zhang C, Liu L,  et al., 2017, Macrophage-
               of embryonic stem cells.  Biofabrication [Internet],   derived mir-155-containing exosomes suppress fibroblast
               8(3):35020.                                        proliferation and promote fibroblast inflammation during
                                                                  cardiac injury. Mol Ther, 25(1):192–204.
               https://doi.org/10.1088/1758-5090/8/3/035020
            43.   Kowal J, Tkach M, Théry C, 2014, Biogenesis and secretion   58.   Kishore R, Khan M, 2016, More than tiny sacks: Stem cell
               of exosomes. Curr Opin Cell Biol, 29:116–125.      exosomes as cell-free modality for cardiac repair. Circ Res,
                                                                  118(2):330–343.
            44.   Xi XM, Xia SJ, Lu R, 2021, Drug loading techniques for
               exosome-based  drug  delivery  systems.  Die Pharm Int J   59.   Lennaárd AJ, Mamand DR, Wiklander RJ,  et al., 2022,
               Pharm Sci, 76(2–3):61–67.                          Optimised electroporation for loading of extracellular
                                                                  vesicles with doxorubicin. Pharmaceutics, 14(1):38.
            45.   Fu S, Wang Y, Xia X,  et al., 2020, Exosome engineering:
               Current progress in cargo loading and targeted delivery.   60.   Roche CD, Sharma P, Ashton AW, et al., 2021, Printability,
               NanoImpact, 20:100261.                             durability, contractility and vascular network formation
                                                                  in 3D bioprinted cardiac endothelial cells using alginate–
            46.   Pomatto MAC, Bussolati B, D’Antico S, et al., 2019, Improved   gelatin hydrogels. Front Bioeng Biotechnol, 9:636257.
               loading of plasma-derived extracellular vesicles to encapsulate
               antitumor miRNAs. Mol Ther Clin Dev, 13:133–144.  61.   Ouyang L, Yao R, Mao S, et al., 2015, Three-dimensional
                                                                  bioprinting of embryonic stem cells directs highly uniform
            47.   Perbellini F, Watson SA, Bardi I, et al., 2018, Heterocellularity   embryoid body formation. Biofabrication, 7(4):44101.
               and cellular cross-talk in the cardiovascular system. Front
               Cardiovasc Med, 5:143.                          62.   Shapira  A, Noor  N, Asulin  M,  et  al., 2018,  Stabilization
                                                                  strategies in  extrusion-based 3D  bioprinting for  tissue
            48.   Whitehead AJ, Engler AJ, 2021, Regenerative cross talk   engineering. Appl Phys Rev, 5(4):41112.
               between cardiac cells and macrophages. Am J Physiol Circ
               Physiol, 320(6):H2211–H2221.                    63.   Querdel E, Reinsch M, Castro L,  et al., 2021, Human
                                                                  engineered  heart  tissue  patches  remuscularize  the
            49.   Honold L, Nahrendorf M, 2018, Resident and monocyte-
               derived macrophages in cardiovascular disease.  Circ Res,   injured heart in a dose-dependent manner.  Circulation,
               122(1):113–127.                                    143(20):1991–2006.







            Volume 9 Issue 2 (2023)                        330                     https://doi.org/10.18063/ijb.v9i2.670
   333   334   335   336   337   338   339   340   341   342   343