Page 387 - IJB-9-2
P. 387

International Journal of Bioprinting   3D gel-printed β-TCP/TiO2 porous scaffolds for cancellous bone tissue engineering



            20.  Mofakhami S, Salahinejad E, 2021, Biphasic calcium   bioactive cements. J Mech Behav Biomed Mater, 89:33–47.
               phosphate microspheres in biomedical applications.  J   32.  Bakhtiyari SSE, Karbasi S, Monshi A, et al., 2016, Evaluation
               Control Release, 338:527–536.
                                                                  of the effects of nano-TiO2 on bioactivity and mechanical
            21.  Lobo SE, Arinzeh TL, 2010, Biphasic calcium phosphate   properties of nano bioglass-P3HB composite scaffold for
               ceramics for bone regeneration and tissue engineering   bone tissue engineering. J Mater Sci Mater Med, 27(1):1–17.
               applications. Materials, 3(2):815–826.          33.  Ghasemi S, Ghomi H, 2021, Investigation of applying
            22.  Deisinger U. Generating porous ceramic scaffolds:   chitosan coating on antibacterial and biocompatibility
               processing and properties; proceedings of the Key   properties of bredigite/titanium dioxide composite scaffolds.
               Engineering Materials, F, 2010 [C]. Trans Tech Publ. Key Eng   J Biomater Appl, 36(3):406–418.
               Mater, 441:155–179                              34.  Melchels FP, Domingos MA, Klein TJ, et al., 2012, Additive

            23.  Wongwitwichot P, Kaewsrichan J, Chua K, et al., 2010,   manufacturing of tissues and organs.  Prog Polym Sci,
               Comparison of TCP and TCP/HA hybrid scaffolds for   37(8):1079–1104.
               osteoconductive activity. Open Biomed Eng J, 4:279.  35.  Naicker PK, Cummings PT, Zhang H, et al., 2005,
            24.  Shahrouzifar M, Salahinejad E, Sharifi E, 2019, Co-  Characterization of titanium dioxide nanoparticles
               incorporation of strontium and fluorine into diopside   using molecular dynamics simulations.  J  Phys  Chem  B,
               scaffolds: Bioactivity, biodegradation and cytocompatibility   109(32):15243–15249.
               evaluations. Mater Sci Eng C, 103:109752.       36.  Arsad MS, Lee PM, Hung LK, 2011, Synthesis and
                                                                  characterization of hydroxyapatite nanoparticles and β-TCP
            25.  Macchetta A, Turner IG, Bowen CR, 2009, Fabrication of
               HA/TCP scaffolds with a graded and porous structure using   particles. Proceedings of the 2nd International Conference on
               a camphene-based freeze-casting method.  Acta Biomater,   Biotechnology and Food Science, IPCBEE, F.
               5(4):1319–1327.                                 37.  Peters RJ, Van Bemmel G, Herrera-Rivera Z, et al., 2014,
                                                                  Characterization of titanium dioxide nanoparticles in food
            26.  Gbureck U, Hölzel T, Klammert U, et al., 2007, Resorbable
               dicalcium  phosphate  bone  substitutes  prepared  by 3D   products: Analytical methods to define nanoparticles.  J
                                                                  Agric Food Chem, 62(27):6285–6293.
               powder printing. Adv Funct Mater, 17(18):3940–3945.
                                                               38.  Wu T, Yu S, Chen D, et al., 2017, Bionic design, materials and
            27.  Xu T, Zhao W, Zhu J-M, et al., 2013, Complex heterogeneous   performance of bone tissue scaffolds. Materials, 10(10):1187.
               tissue constructs containing multiple cell types prepared by
               inkjet printing technology. Biomaterials, 34(1):130–139.  39.  Chen Z, Li J, Liu C, et al., 2019, Preparation of high solid loading
                                                                  and low viscosity ceramic slurries for photopolymerization-
            28.  Söhling N, Al Zoghool S, Schätzlein E, et al., 2022, In   based 3D printing. Ceram Int, 45(9):11549–11557.
               vitro evaluation of a 20% bioglass-containing 3D printable
               PLA composite for bone tissue engineering. Int J Bioprint,   40.  Shepherd J, Best S, 2011, Calcium phosphate scaffolds for
               8(4):602.                                          bone repair. JOM, 63(4):83–92.
            29.  Horn TJ, Harrysson OL, 2012, Overview of current additive   41.  Miller C, Kokubo T, Reaney I, et al., 2002, Formation
               manufacturing technologies and selected applications.  Sci   of apatite layers on modified canasite glass–ceramics in
               Prog, 95(3):255–282.                               simulated body fluid. J Biomed Mater Res, 59(3):473–480.
                                                               42.  Li P, Ohtsuki C, Kokubo T, et al., 1993, Process of formation
            30.  Yi S, Liu Q, Luo Z, et al., 2022, Micropore‐forming gelatin
               methacryloyl  (GelMA)  bioink  toolbox  2.0:  Designable   of bone-like apatite layer on silica gel. J Mater Sci Mater Med,
               tunability and adaptability for 3D bioprinting applications.   4(2):127–131.
               Small, 18(25):2106357.                          43.  Gandolfi  MG,  Taddei  P,  Tinti  A, et al.,  2011,  Alpha-TCP
                                                                  improves the apatite-formation ability of calcium-silicate
            31.  Baudín C, Benet T, Pena P, 2019, Effect of  graphene on
               setting and mechanical behaviour of tricalcium phosphate   hydraulic cement soaked in phosphate solutions. Mater Sci
                                                                  Eng C, 31(7):1412–1422.

















            Volume 9 Issue 2 (2023)                        379                     https://doi.org/10.18063/ijb.v9i2.673
   382   383   384   385   386   387   388   389   390   391   392