Page 72 - IJB-9-2
P. 72

International Journal of Bioprinting                                Bioprinting in wound dressing and healing



            31.   Zheng Y, Mao S, Zhu J,  et al., 2022, Current status of   45.   Chen C, Ibekwe‐SanJuan F, Hou J, 2010, The structure and
               electrochemical detection  of sunset yellow  based  on   dynamics of cocitation clusters: A multiple‐perspective
               bibliometrics. Food Chem Toxicol, 164: 113019.     cocitation analysis.  J Am Soc Inf Sci Technol, 61(7):
                                                                  1386–1409.
               https://doi.org/10.1016/j.fct.2022.113019
            32.   Shen Y, Mao S, Chen F,  et al., 2022, Electrochemical   46.   Xueshu D, Wenxian, 2022, COOC is a software for
               detection of Sudan red series azo dyes: Bibliometrics based   bibliometrics and knowledge mapping [CP/OL].
               analysis. Food Chem Toxicol, 163: 112960.          https://github.com/2088904822. Accessed February 15,
               https://doi.org/10.1016/j.fct.2022.112960          2022.
            33.   Li X, Zheng Y, Wu W, et al., 2022, Graphdiyne applications   47.   Miller ED, Li K, Kanade T, et al., 2011, Spatially directed
               in sensors: A bibliometric analysis and literature review.   guidance of stem cell population migration by immobilized
               Chemosphere, 307: 135720.                          patterns of growth factors. Biomaterials, 32(11): 2775–2785.
               https://doi.org/10.1016/j.chemosphere.2022.135720  https://doi.org/10.1016/j.biomaterials.2010.12.005
            34.   Zheng Y, Karimi-Maleh H, Fu L, 2022, Evaluation of   48.   Zhang G, Wang Z, Han F, et al., 2021, Mechano-regulation
               antioxidants using electrochemical sensors: A bibliometric   of vascular network formation without branches in 3D
               analysis. Sensors, 22(9): 3238.                    bioprinted cell-laden hydrogel constructs. Biotechnol Bioeng,
                                                                  118(10): 3787–3798.
               https://doi.org/10.3390/s22093238
                                                                  https://doi.org/10.1002/bit.27854
            35.   Fu L, Mao S, Chen F,  et al., 2022, Graphene-based
               electrochemical sensors for antibiotic detection in water,   49.   Glover K, Mathew E, Pitzanti G, et al., 2022, 3D bioprinted
               food and soil: A scientometric analysis in CiteSpace    scaffolds for diabetic wound-healing applications.  Drug
               (2011–2021). Chemosphere, 297: 134127.             Deliv Transl Res, in-press.
               https://doi.org/10.1016/j.chemosphere.2022.134127  https://doi.org/10.1007/s13346-022-01115-8
            36.   Jin M, Liu J, Wu W,  et al., 2022, Relationship between   50.   Alblawi  A,  Ranjani  AS,  Yasmin  H,  et al.,  2020,  Scaffold-
               graphene and pedosphere: A scientometric analysis.   free: A developing technique in field of tissue engineering.
               Chemosphere, 300: 134599.                          Comput Methods Programs Biomed, 185: 105148.
               https://doi.org/10.1016/j.chemosphere.2022.134599  https://doi.org/10.1016/j.cmpb.2019.105148
            37.   Rodríguez-Salvador M, Rio-Belver RM, Garechana-Anacabe   51.   Cubo N, Garcia M, Del Canizo JF, et al., 2016, 3D bioprinting
               G, 2017, Scientometric and patentometric analyses to   of functional human skin: Production and in vivo analysis.
               determine the knowledge landscape in innovative technologies:   Biofabrication, 9(1): 015006.
               The case of 3D bioprinting. PLoS One, 12(6): e0180375.  52.   Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
            38.   García-García LA, Rodríguez-Salvador M, 2020, Disclosing   amniotic fluid-derived stem cells accelerate healing of large
               main authors and organisations collaborations in bioprinting   skin wounds. Stem Cells Transl Med, 1(11): 792–802.
               through network maps analysis. J Biomed Semant, 11(1): 3.  https://doi.org/10.5966/sctm.2012-0088
               https://doi.org/10.1186/s13326-020-0219-z       53.   Ishack S, Lipner SR, 2020, A review of 3-dimensional skin
            39.   Naveau A, Smirani R, Catros S, et al., 2017, A bibliometric   bioprinting techniques: Applications, approaches, and
               study to assess bioprinting evolution. Appl Sci, 7(12): 1331.  trends. Dermatol Surg, 46(12): 1500–1505.
            40.   Rodriguez-Salvador M, Fox-Miranda I, Perez-Benitez BE, et   54.   Hamidi M, Azadi A, Rafiei P, 2008, Hydrogel nanoparticles
               al., 2022, Research dynamics of tissue spheroids as building   in drug delivery. Adv Drug Deliv Rev, 60(15):1638–1649.
               blocks: A scientometric analysis. Int J Bioprint, 8(3): 585.  55.   Bhattarai N, Gunn J, Zhang M, 2010, Chitosan-based
            41.   Pedroza-González SC, Rodriguez-Salvador M, Pérez Benítez   hydrogels for controlled, localized drug delivery. Adv Drug
               BE, et al., 2021, Bioinks for 3D bioprinting: A scientometric   Deliv Rev, 62(1): 83–99.
               analysis of two decades of progress. Int J Bioprint, 7(2): 333  56.   Maver T, Smrke DM, Kurečič M, et al., 2018, Combining
            42.   Börner K, Chen C, Boyack KW, 2003, Visualizing knowledge   3D  printing  and  electrospinning  for  preparation  of  pain-
               domains. Annu Rev Inf Sci Technol, 37(1): 179–255.  relieving wound-dressing materials.  J Sol-Gel Sci Technol,
                                                                  88(1): 33–48.
            43.   Chen C, 2006, CiteSpace II: Detecting and visualizing
               emerging trends and transient patterns in scientific   https://doi.org/10.1007/s10971-018-4630-1
               literature. J Am Soc Inf Sci Technol, 57(3): 359–377.
                                                               57.   Abasalizadeh F, Moghaddam SV, Alizadeh E,  et al., 2020,
            44.   Chen  C,  2004,  Searching  for  intellectual  turning  points:   Alginate-based hydrogels as drug delivery vehicles in cancer
               Progressive knowledge domain visualization. Proc Natl Acad   treatment and their applications in wound dressing and 3D
               Sci, 101(suppl 1): 5303–5310.                      bioprinting. J Biol Eng, 14(1): 1–22.


            Volume 9 Issue 2 (2023)                         64                       http://doi.org/10.18063/ijb.v9i2.653
   67   68   69   70   71   72   73   74   75   76   77