Page 72 - IJB-9-2
P. 72
International Journal of Bioprinting Bioprinting in wound dressing and healing
31. Zheng Y, Mao S, Zhu J, et al., 2022, Current status of 45. Chen C, Ibekwe‐SanJuan F, Hou J, 2010, The structure and
electrochemical detection of sunset yellow based on dynamics of cocitation clusters: A multiple‐perspective
bibliometrics. Food Chem Toxicol, 164: 113019. cocitation analysis. J Am Soc Inf Sci Technol, 61(7):
1386–1409.
https://doi.org/10.1016/j.fct.2022.113019
32. Shen Y, Mao S, Chen F, et al., 2022, Electrochemical 46. Xueshu D, Wenxian, 2022, COOC is a software for
detection of Sudan red series azo dyes: Bibliometrics based bibliometrics and knowledge mapping [CP/OL].
analysis. Food Chem Toxicol, 163: 112960. https://github.com/2088904822. Accessed February 15,
https://doi.org/10.1016/j.fct.2022.112960 2022.
33. Li X, Zheng Y, Wu W, et al., 2022, Graphdiyne applications 47. Miller ED, Li K, Kanade T, et al., 2011, Spatially directed
in sensors: A bibliometric analysis and literature review. guidance of stem cell population migration by immobilized
Chemosphere, 307: 135720. patterns of growth factors. Biomaterials, 32(11): 2775–2785.
https://doi.org/10.1016/j.chemosphere.2022.135720 https://doi.org/10.1016/j.biomaterials.2010.12.005
34. Zheng Y, Karimi-Maleh H, Fu L, 2022, Evaluation of 48. Zhang G, Wang Z, Han F, et al., 2021, Mechano-regulation
antioxidants using electrochemical sensors: A bibliometric of vascular network formation without branches in 3D
analysis. Sensors, 22(9): 3238. bioprinted cell-laden hydrogel constructs. Biotechnol Bioeng,
118(10): 3787–3798.
https://doi.org/10.3390/s22093238
https://doi.org/10.1002/bit.27854
35. Fu L, Mao S, Chen F, et al., 2022, Graphene-based
electrochemical sensors for antibiotic detection in water, 49. Glover K, Mathew E, Pitzanti G, et al., 2022, 3D bioprinted
food and soil: A scientometric analysis in CiteSpace scaffolds for diabetic wound-healing applications. Drug
(2011–2021). Chemosphere, 297: 134127. Deliv Transl Res, in-press.
https://doi.org/10.1016/j.chemosphere.2022.134127 https://doi.org/10.1007/s13346-022-01115-8
36. Jin M, Liu J, Wu W, et al., 2022, Relationship between 50. Alblawi A, Ranjani AS, Yasmin H, et al., 2020, Scaffold-
graphene and pedosphere: A scientometric analysis. free: A developing technique in field of tissue engineering.
Chemosphere, 300: 134599. Comput Methods Programs Biomed, 185: 105148.
https://doi.org/10.1016/j.chemosphere.2022.134599 https://doi.org/10.1016/j.cmpb.2019.105148
37. Rodríguez-Salvador M, Rio-Belver RM, Garechana-Anacabe 51. Cubo N, Garcia M, Del Canizo JF, et al., 2016, 3D bioprinting
G, 2017, Scientometric and patentometric analyses to of functional human skin: Production and in vivo analysis.
determine the knowledge landscape in innovative technologies: Biofabrication, 9(1): 015006.
The case of 3D bioprinting. PLoS One, 12(6): e0180375. 52. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
38. García-García LA, Rodríguez-Salvador M, 2020, Disclosing amniotic fluid-derived stem cells accelerate healing of large
main authors and organisations collaborations in bioprinting skin wounds. Stem Cells Transl Med, 1(11): 792–802.
through network maps analysis. J Biomed Semant, 11(1): 3. https://doi.org/10.5966/sctm.2012-0088
https://doi.org/10.1186/s13326-020-0219-z 53. Ishack S, Lipner SR, 2020, A review of 3-dimensional skin
39. Naveau A, Smirani R, Catros S, et al., 2017, A bibliometric bioprinting techniques: Applications, approaches, and
study to assess bioprinting evolution. Appl Sci, 7(12): 1331. trends. Dermatol Surg, 46(12): 1500–1505.
40. Rodriguez-Salvador M, Fox-Miranda I, Perez-Benitez BE, et 54. Hamidi M, Azadi A, Rafiei P, 2008, Hydrogel nanoparticles
al., 2022, Research dynamics of tissue spheroids as building in drug delivery. Adv Drug Deliv Rev, 60(15):1638–1649.
blocks: A scientometric analysis. Int J Bioprint, 8(3): 585. 55. Bhattarai N, Gunn J, Zhang M, 2010, Chitosan-based
41. Pedroza-González SC, Rodriguez-Salvador M, Pérez Benítez hydrogels for controlled, localized drug delivery. Adv Drug
BE, et al., 2021, Bioinks for 3D bioprinting: A scientometric Deliv Rev, 62(1): 83–99.
analysis of two decades of progress. Int J Bioprint, 7(2): 333 56. Maver T, Smrke DM, Kurečič M, et al., 2018, Combining
42. Börner K, Chen C, Boyack KW, 2003, Visualizing knowledge 3D printing and electrospinning for preparation of pain-
domains. Annu Rev Inf Sci Technol, 37(1): 179–255. relieving wound-dressing materials. J Sol-Gel Sci Technol,
88(1): 33–48.
43. Chen C, 2006, CiteSpace II: Detecting and visualizing
emerging trends and transient patterns in scientific https://doi.org/10.1007/s10971-018-4630-1
literature. J Am Soc Inf Sci Technol, 57(3): 359–377.
57. Abasalizadeh F, Moghaddam SV, Alizadeh E, et al., 2020,
44. Chen C, 2004, Searching for intellectual turning points: Alginate-based hydrogels as drug delivery vehicles in cancer
Progressive knowledge domain visualization. Proc Natl Acad treatment and their applications in wound dressing and 3D
Sci, 101(suppl 1): 5303–5310. bioprinting. J Biol Eng, 14(1): 1–22.
Volume 9 Issue 2 (2023) 64 http://doi.org/10.18063/ijb.v9i2.653

