Page 76 - IJB-9-2
P. 76
International Journal of Bioprinting Bioprinting in wound dressing and healing
127. Ríos-Galacho M, Martínez-Moreno D, López-Ruiz E, 140. Hendriks J, Willem Visser C, Henke S, et al., 2015,
et al., 2021, An overview on the manufacturing of functional Optimizing cell viability in droplet-based cell deposition.
and mature cellular skin substitutes. Tissue Eng Part B Rev, Sci Rep, 5(1): 11304.
28(5): 1035–1052. https://doi.org/10.1038/srep11304
https://doi.org/10.1089/ten.teb.2021.0131 141. Das S, Das D, 2021, Rational design of peptide-based smart
128. Bhardwaj N, Chouhan D, Mandal B, 2017, Tissue engineered hydrogels for therapeutic applications. Front Chem, 9:
skin and wound healing: Current strategies and future 770102.
directions. Curr Pharm Des, 23(24): 3455–3482. 142. Jahanshahi M, Hamdi D, Godau B, et al., 2020, An engineered
https://doi.org/10.2174/1381612823666170526094606 infected epidermis model for in vitro study of the skin’s pro-
129. Malekmohammadi S, Sedghi Aminabad N, Sabzi A, inflammatory response. Micromachines, 11(2): 227.
et al., 2021, Smart and biomimetic 3D and 4D printed 143. Zhao W, Chen H, Zhang Y, et al., 2022, Adaptive multi-
composite hydrogels: Opportunities for different biomedical degree-of-freedom in situ bioprinting robot for hair-follicle-
applications. Biomedicines, 9(11): 1537. inclusive skin repair: A preliminary study conducted in
130. Zidarič T, Milojević M, Gradišnik L, et al., 2020, Polysaccharide- mice. Bioeng Transl Med, n/a(n/a): e10303.
based bioink formulation for 3D bioprinting of an in vitro https://doi.org/10.1002/btm2.10303
model of the human dermis. Nanomaterials, 10(4): 733.
144. Tasoglu S, Demirci U, 2013, Bioprinting for stem cell
131. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del research. Trends Biotechnol, 31(1): 10–19.
Campo A, et al., 2021, Development of bioactive catechol
functionalized nanoparticles applicable for 3D bioprinting. https://doi.org/10.1016/j.tibtech.2012.10.005
Mater Sci Eng C, 131: 112515. 145. Echave MC, Hernáez-Moya R, Iturriaga L, et al., 2019,
https://doi.org/10.1016/j.msec.2021.112515 Recent advances in gelatin-based therapeutics. Expert Opin
Biol Ther, 19(8): 773–779.
132. Sohn S, Buskirk MV, Buckenmeyer MJ, et al., 2020, Whole
organ engineering: Approaches, challenges, and future https://doi.org/10.1080/14712598.2019.1610383
directions. Appl Sci, 10(12): 4277. 146. Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of
133. Jin R, Cui Y, Chen H, et al., 2021, Three-dimensional bio-inspired 3D tissue constructs for skin regeneration.
bioprinting of a full-thickness functional skin model using Biomaterials, 258: 120287.
acellular dermal matrix and gelatin methacrylamide bioink. https://doi.org/10.1016/j.biomaterials.2020.120287
Acta Biomater, 131: 248–261.
147. Kong B, Liu R, Guo J, et al., 2023, Tailoring micro/nano-fibers
https://doi.org/10.1016/j.actbio.2021.07.012 for biomedical applications. Bioact Mater, 19: 328–347.
134. Pleguezuelos-Beltrán P, Gálvez-Martín P, Nieto-García D, et https://doi.org/10.1016/j.bioactmat.2022.04.016
al., 2022, Advances in spray products for skin regeneration.
Bioact Mater, 16: 187–203. 148. Xu J, Zheng S, Hu X, et al., 2020, Advances in the research of
bioinks based on natural collagen, polysaccharide and their
https://doi.org/10.1016/j.bioactmat.2022.02.023
derivatives for skin 3D bioprinting. Polymers, 12(6): 1237.
135. Phang SJ, Arumugam B, Kuppusamy UR, et al., 2021, A review
of diabetic wound models—Novel insights into diabetic foot 149. Kogelenberg SV, Yue Z, Dinoro JN, et al., 2018, Three-
ulcer. J Tissue Eng Regen Med, 15(12): 1051–1068. dimensional printing and cell therapy for wound repair. Adv
Wound Care, 7(5): 145–156.
https://doi.org/10.1002/term.3246
https://doi.org/10.1089/wound.2017.0752
136. Manita PG, Garcia-Orue I, Santos-Vizcaino E, et al., 2021,
3D bioprinting of functional skin substitutes: From current 150. Khoda AB, Koc B, 2012, Designing controllable porosity
achievements to future goals. Pharmaceuticals, 14(4): 362. for multifunctional deformable tissue scaffolds. J Med
Devices, 6(3): 031003.
137. Kant RJ, Coulombe KLK, 2018, Integrated approaches
to spatiotemporally directing angiogenesis in host and https://doi.org/10.1115/1.4007009
engineered tissues. Acta Biomater, 69: 42–62. 151. Kim SH, Hong H, Ajiteru O, et al., 2021, 3D bioprinted silk
https://doi.org/10.1016/j.actbio.2018.01.017 fibroin hydrogels for tissue engineering. Nat Protoc, 16(12):
5484–5532.
138. Douillet C, Nicodeme M, Hermant L, et al., 2022, From local
to global matrix organization by fibroblasts: A 4D laser- https://doi.org/10.1038/s41596-021-00622-1
assisted bioprinting approach. Biofabrication, 14(2): 025006. 152. Turner PR, Murray E, McAdam CJ, et al., 2020, Peptide
139. Glover K, Stratakos ACh, Varadi A, et al., 2021, 3D scaffolds chitosan/dextran core/shell vascularized 3D constructs
in the treatment of diabetic foot ulcers: New trends vs for wound healing. ACS Appl Mater Interfaces, 12(29):
conventional approaches. Int J Pharm, 599: 120423. 32328–32339.
https://doi.org/10.1016/j.ijpharm.2021.120423 https://doi.org/10.1021/acsami.0c07212
Volume 9 Issue 2 (2023) 68 http://doi.org/10.18063/ijb.v9i2.653

