Page 76 - IJB-9-2
P. 76

International Journal of Bioprinting                                Bioprinting in wound dressing and healing



            127.  Ríos-Galacho M, Martínez-Moreno D, López-Ruiz E,   140.  Hendriks J, Willem Visser C, Henke S,  et al., 2015,
               et al., 2021, An overview on the manufacturing of functional   Optimizing cell viability in droplet-based cell deposition.
               and mature cellular skin substitutes. Tissue Eng Part B Rev,   Sci Rep, 5(1): 11304.
               28(5): 1035–1052.                                  https://doi.org/10.1038/srep11304
               https://doi.org/10.1089/ten.teb.2021.0131       141.  Das S, Das D, 2021, Rational design of peptide-based smart
            128.  Bhardwaj N, Chouhan D, Mandal B, 2017, Tissue engineered   hydrogels for therapeutic applications.  Front Chem, 9:
               skin and wound healing: Current strategies and future   770102.
               directions. Curr Pharm Des, 23(24): 3455–3482.  142.  Jahanshahi M, Hamdi D, Godau B, et al., 2020, An engineered
               https://doi.org/10.2174/1381612823666170526094606  infected epidermis model for in vitro study of the skin’s pro-
            129.  Malekmohammadi S, Sedghi Aminabad N, Sabzi A,   inflammatory response. Micromachines, 11(2): 227.
               et al., 2021, Smart and biomimetic 3D and 4D printed   143.  Zhao  W,  Chen  H,  Zhang  Y,  et al.,  2022,  Adaptive  multi-
               composite hydrogels: Opportunities for different biomedical   degree-of-freedom in situ bioprinting robot for hair-follicle-
               applications. Biomedicines, 9(11): 1537.           inclusive skin repair: A preliminary study conducted in
            130.  Zidarič T, Milojević M, Gradišnik L, et al., 2020, Polysaccharide-  mice. Bioeng Transl Med, n/a(n/a): e10303.
               based bioink formulation for 3D bioprinting of an in vitro   https://doi.org/10.1002/btm2.10303
               model of the human dermis. Nanomaterials, 10(4): 733.
                                                               144.  Tasoglu S, Demirci U, 2013, Bioprinting for stem cell
            131.  Puertas-Bartolomé M, Włodarczyk-Biegun MK, del   research. Trends Biotechnol, 31(1): 10–19.
               Campo A, et al., 2021, Development of bioactive catechol
               functionalized nanoparticles applicable for 3D bioprinting.   https://doi.org/10.1016/j.tibtech.2012.10.005
               Mater Sci Eng C, 131: 112515.                   145.  Echave MC, Hernáez-Moya R, Iturriaga L,  et  al., 2019,
               https://doi.org/10.1016/j.msec.2021.112515         Recent advances in gelatin-based therapeutics. Expert Opin
                                                                  Biol Ther, 19(8): 773–779.
            132.  Sohn S, Buskirk MV, Buckenmeyer MJ, et al., 2020, Whole
               organ engineering: Approaches, challenges, and future   https://doi.org/10.1080/14712598.2019.1610383
               directions. Appl Sci, 10(12): 4277.             146.  Zhou F, Hong Y, Liang R,  et al., 2020, Rapid printing of
            133.  Jin R, Cui Y, Chen H,  et  al., 2021, Three-dimensional   bio-inspired 3D tissue constructs for skin regeneration.
               bioprinting of a full-thickness functional skin model using   Biomaterials, 258: 120287.
               acellular dermal matrix and gelatin methacrylamide bioink.   https://doi.org/10.1016/j.biomaterials.2020.120287
               Acta Biomater, 131: 248–261.
                                                               147.  Kong B, Liu R, Guo J, et al., 2023, Tailoring micro/nano-fibers
               https://doi.org/10.1016/j.actbio.2021.07.012       for biomedical applications. Bioact Mater, 19: 328–347.
            134.  Pleguezuelos-Beltrán P, Gálvez-Martín P, Nieto-García D, et   https://doi.org/10.1016/j.bioactmat.2022.04.016
               al., 2022, Advances in spray products for skin regeneration.
               Bioact Mater, 16: 187–203.                      148.  Xu J, Zheng S, Hu X, et al., 2020, Advances in the research of
                                                                  bioinks based on natural collagen, polysaccharide and their
               https://doi.org/10.1016/j.bioactmat.2022.02.023
                                                                  derivatives for skin 3D bioprinting. Polymers, 12(6): 1237.
            135.  Phang SJ, Arumugam B, Kuppusamy UR, et al., 2021, A review
               of diabetic wound models—Novel insights into diabetic foot   149.  Kogelenberg SV, Yue Z, Dinoro JN,  et al., 2018, Three-
               ulcer. J Tissue Eng Regen Med, 15(12): 1051–1068.  dimensional printing and cell therapy for wound repair. Adv
                                                                  Wound Care, 7(5): 145–156.
               https://doi.org/10.1002/term.3246
                                                                  https://doi.org/10.1089/wound.2017.0752
            136.  Manita PG, Garcia-Orue I, Santos-Vizcaino E, et al., 2021,
               3D bioprinting of functional skin substitutes: From current   150.  Khoda AB, Koc B, 2012, Designing controllable porosity
               achievements to future goals. Pharmaceuticals, 14(4): 362.  for multifunctional deformable tissue scaffolds.  J Med
                                                                  Devices, 6(3): 031003.
            137.  Kant RJ, Coulombe KLK, 2018, Integrated approaches
               to  spatiotemporally  directing  angiogenesis  in  host  and   https://doi.org/10.1115/1.4007009
               engineered tissues. Acta Biomater, 69: 42–62.   151.  Kim SH, Hong H, Ajiteru O, et al., 2021, 3D bioprinted silk
               https://doi.org/10.1016/j.actbio.2018.01.017       fibroin hydrogels for tissue engineering. Nat Protoc, 16(12):
                                                                  5484–5532.
            138.  Douillet C, Nicodeme M, Hermant L, et al., 2022, From local
               to  global  matrix  organization  by  fibroblasts:  A  4D  laser-  https://doi.org/10.1038/s41596-021-00622-1
               assisted bioprinting approach. Biofabrication, 14(2): 025006.  152.  Turner PR, Murray E, McAdam CJ,  et al., 2020, Peptide
            139.  Glover K, Stratakos ACh, Varadi A, et al., 2021, 3D scaffolds   chitosan/dextran core/shell vascularized 3D constructs
               in the treatment of diabetic foot ulcers: New trends vs   for wound healing.  ACS Appl  Mater  Interfaces, 12(29):
               conventional approaches. Int J Pharm, 599: 120423.  32328–32339.
               https://doi.org/10.1016/j.ijpharm.2021.120423      https://doi.org/10.1021/acsami.0c07212

            Volume 9 Issue 2 (2023)                         68                       http://doi.org/10.18063/ijb.v9i2.653
   71   72   73   74   75   76   77   78   79   80   81