Page 71 - IJB-9-2
P. 71

International Journal of Bioprinting                                Bioprinting in wound dressing and healing



            2.   Huyan Y, Lian Q, Zhao T,  et al., 2020, Pilot study of the   17.   Li W, Mille LS, Robledo JA, et al., 2020, Recent advances
               biological properties  and  vascularization  of 3D  printed   in formulating and processing biomaterial inks for vat
               bilayer skin grafts. Int J Bioprinting, 6(1): 246–246.   polymerization‐based 3D printing.  Adv Healthc Mater,
                                                                  9(15): 2000156.
               https://doi.org/10.18063/ijb.v6i1.246
                                                               18.   Mobaraki M, Ghaffari M, Yazdanpanah A,  et al., 2020,
            3.   Ng WL, Yeong WY, 2019, The future of skin toxicology
               testing—Three-dimensional bioprinting meets microfluidics.   Bioinks and bioprinting: A focused review. Bioprinting, 18:
               Int J Bioprinting, 5(2.1): 237–237.                e00080.
                                                               19.   Derakhshanfar S, Mbeleck R, Xu K,  et al., 2018, 3D
               https://doi.org/10.18063/ijb.v5i2.1.237
                                                                  bioprinting for biomedical devices and tissue engineering:
            4.   Huang J, Lei X, Huang Z, et al., 2022, Bioprinted gelatin-  A review of recent trends and advances. Bioact Mater, 3(2):
               recombinant type III collagen hydrogel promotes wound   144–156.
               healing. Int J Bioprinting, 8(2): 517–517.
                                                               20.   Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
               https://doi.org/10.18063/ijb.v8i2.517              for 3D bioprinting: An overview.  Biomater Sci, 6(5):
            5.   Heng MC, 2013, Signaling pathways targeted by curcumin   915–946.
               in acute and chronic injury: Burns and photo‐damaged skin.   21.   Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive
               Int J Dermatol, 52(5):531–543.                     review on droplet-based bioprinting: Past, present and
            6.   Tottoli EM, Dorati R, Genta I,  et  al., 2020, Skin wound   future. Biomaterials, 102: 20–42.
               healing process and new emerging technologies for skin   22.   Sun W, Starly B, Daly AC,  et al., 2020, The bioprinting
               wound care and regeneration. Pharmaceutics, 12(8): 735.  roadmap. Biofabrication, 12(2): 022002.
            7.   De Luca I, Pedram P, Moeini A, et al., 2021, Nanotechnology   23.   Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
               development for formulating essential oils in wound   organs. Nat Biotechnol, 32(8): 773–785.
               dressing materials to promote the wound-healing process:
               A review. Appl Sci, 11(4): 1713.                24.   He  P,  Zhao  J,  Zhang  J,  et al.,  2018,  Bioprinting  of  skin
                                                                  constructs for wound healing. Burns Trauma, 6: 5.
            8.   Capel AJ, Rimington RP, Lewis MP, et al., 2018, 3D printing
               for chemical, pharmaceutical and biological applications.   https://doi.org/10.1186/s41038-017-0104-x
               Nat Rev Chem, 2(12): 422–436.                   25.   Vijayavenkataraman S, Lu W, Fuh J, 2016, 3D bioprinting of
            9.   Mironov V, 2003,  Printing technology to produce  living   skin: A state-of-the-art review on modelling, materials, and
               tissue. Expert Opin Biol Ther, 3(5): 701–704.      processes. Biofabrication, 8(3): 032001.
            10.   Mironov V, Boland T, Trusk T, et al., 2003, Organ printing:   26.   Varkey M, Visscher DO, van Zuijlen PPM, et al., 2019, Skin
               Computer-aided jet-based 3D tissue engineering. TRENDS   bioprinting: The future of burn wound reconstruction?
               Biotechnol, 21(4): 157–161.                        Burns Trauma, 7: s41038-019-0142–7.
            11.   Wilson Jr WC, Boland T, 2003, Cell and organ printing 1:   https://doi.org/10.1186/s41038-019-0142-7
               Protein and cell printers. Anat Rec A Discov Mol Cell Evol   27.   Wang Y, Yuan X, Yao B, et al., 2022, Tailoring bioinks of
               Biol, 272(2): 491–496.                             extrusion-based bioprinting for cutaneous wound healing.
            12.   Jiang T, Munguia-Lopez JG, Flores-Torres S,  et al., 2019,   Bioact Mater, 17: 178–194.
               Extrusion bioprinting of soft materials: An emerging   https://doi.org/10.1016/j.bioactmat.2022.01.024
               technique for biological model fabrication. Appl Phys Rev,
               6(1): 011310.                                   28.   Xiang S, Mao S, Chen F, et al., 2022, A bibliometric analysis
                                                                  of graphene in acetaminophen detection: Current status,
            13.   Zhuang P, Ng WL, An J,  et al., 2019, Layer-by-layer   development, and future directions.  Chemosphere, 306:
               ultraviolet assisted extrusion-based (UAE) bioprinting of   135517.
               hydrogel constructs with high aspect ratio for soft tissue
               engineering applications. PLoS One, 14(6): e0216776.  https://doi.org/10.1016/j.chemosphere.2022.135517
            14.   Li X, Liu B, Pei B,  et al., 2020, Inkjet bioprinting of   29.   Pan Y, Yin C, Fernandez C,  et al., 2022, A systematic
               biomaterials. Chem Rev, 120(19): 10793–10833.      review and bibliometric analysis of flame-retardant rigid
                                                                  polyurethane  foam from  1963 to 2021.  Polymers, 14(15):
            15.   Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling   3011.
               droplet impact velocity and droplet volume: Key factors to
               achieving high cell viability in sub-nanoliter droplet-based   30.   Zheng Y, Karimi-Maleh H, Fu L, 2022, Advances in
               bioprinting. Int J Bioprint, 8(1): 424.            electrochemical techniques for the detection and analysis
                                                                  of genetically modified organisms: An analysis based on
            16.   Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-  bibliometrics. Chemosensors, 10(5): 194.
               based bioprinting—Process, materials, applications and
               regulatory challenges. Biofabrication, 12(2): 022001.  https://doi.org/10.3390/chemosensors10050194


            Volume 9 Issue 2 (2023)                         63                       http://doi.org/10.18063/ijb.v9i2.653
   66   67   68   69   70   71   72   73   74   75   76