Page 71 - IJB-9-2
P. 71
International Journal of Bioprinting Bioprinting in wound dressing and healing
2. Huyan Y, Lian Q, Zhao T, et al., 2020, Pilot study of the 17. Li W, Mille LS, Robledo JA, et al., 2020, Recent advances
biological properties and vascularization of 3D printed in formulating and processing biomaterial inks for vat
bilayer skin grafts. Int J Bioprinting, 6(1): 246–246. polymerization‐based 3D printing. Adv Healthc Mater,
9(15): 2000156.
https://doi.org/10.18063/ijb.v6i1.246
18. Mobaraki M, Ghaffari M, Yazdanpanah A, et al., 2020,
3. Ng WL, Yeong WY, 2019, The future of skin toxicology
testing—Three-dimensional bioprinting meets microfluidics. Bioinks and bioprinting: A focused review. Bioprinting, 18:
Int J Bioprinting, 5(2.1): 237–237. e00080.
19. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D
https://doi.org/10.18063/ijb.v5i2.1.237
bioprinting for biomedical devices and tissue engineering:
4. Huang J, Lei X, Huang Z, et al., 2022, Bioprinted gelatin- A review of recent trends and advances. Bioact Mater, 3(2):
recombinant type III collagen hydrogel promotes wound 144–156.
healing. Int J Bioprinting, 8(2): 517–517.
20. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
https://doi.org/10.18063/ijb.v8i2.517 for 3D bioprinting: An overview. Biomater Sci, 6(5):
5. Heng MC, 2013, Signaling pathways targeted by curcumin 915–946.
in acute and chronic injury: Burns and photo‐damaged skin. 21. Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive
Int J Dermatol, 52(5):531–543. review on droplet-based bioprinting: Past, present and
6. Tottoli EM, Dorati R, Genta I, et al., 2020, Skin wound future. Biomaterials, 102: 20–42.
healing process and new emerging technologies for skin 22. Sun W, Starly B, Daly AC, et al., 2020, The bioprinting
wound care and regeneration. Pharmaceutics, 12(8): 735. roadmap. Biofabrication, 12(2): 022002.
7. De Luca I, Pedram P, Moeini A, et al., 2021, Nanotechnology 23. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
development for formulating essential oils in wound organs. Nat Biotechnol, 32(8): 773–785.
dressing materials to promote the wound-healing process:
A review. Appl Sci, 11(4): 1713. 24. He P, Zhao J, Zhang J, et al., 2018, Bioprinting of skin
constructs for wound healing. Burns Trauma, 6: 5.
8. Capel AJ, Rimington RP, Lewis MP, et al., 2018, 3D printing
for chemical, pharmaceutical and biological applications. https://doi.org/10.1186/s41038-017-0104-x
Nat Rev Chem, 2(12): 422–436. 25. Vijayavenkataraman S, Lu W, Fuh J, 2016, 3D bioprinting of
9. Mironov V, 2003, Printing technology to produce living skin: A state-of-the-art review on modelling, materials, and
tissue. Expert Opin Biol Ther, 3(5): 701–704. processes. Biofabrication, 8(3): 032001.
10. Mironov V, Boland T, Trusk T, et al., 2003, Organ printing: 26. Varkey M, Visscher DO, van Zuijlen PPM, et al., 2019, Skin
Computer-aided jet-based 3D tissue engineering. TRENDS bioprinting: The future of burn wound reconstruction?
Biotechnol, 21(4): 157–161. Burns Trauma, 7: s41038-019-0142–7.
11. Wilson Jr WC, Boland T, 2003, Cell and organ printing 1: https://doi.org/10.1186/s41038-019-0142-7
Protein and cell printers. Anat Rec A Discov Mol Cell Evol 27. Wang Y, Yuan X, Yao B, et al., 2022, Tailoring bioinks of
Biol, 272(2): 491–496. extrusion-based bioprinting for cutaneous wound healing.
12. Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2019, Bioact Mater, 17: 178–194.
Extrusion bioprinting of soft materials: An emerging https://doi.org/10.1016/j.bioactmat.2022.01.024
technique for biological model fabrication. Appl Phys Rev,
6(1): 011310. 28. Xiang S, Mao S, Chen F, et al., 2022, A bibliometric analysis
of graphene in acetaminophen detection: Current status,
13. Zhuang P, Ng WL, An J, et al., 2019, Layer-by-layer development, and future directions. Chemosphere, 306:
ultraviolet assisted extrusion-based (UAE) bioprinting of 135517.
hydrogel constructs with high aspect ratio for soft tissue
engineering applications. PLoS One, 14(6): e0216776. https://doi.org/10.1016/j.chemosphere.2022.135517
14. Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of 29. Pan Y, Yin C, Fernandez C, et al., 2022, A systematic
biomaterials. Chem Rev, 120(19): 10793–10833. review and bibliometric analysis of flame-retardant rigid
polyurethane foam from 1963 to 2021. Polymers, 14(15):
15. Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling 3011.
droplet impact velocity and droplet volume: Key factors to
achieving high cell viability in sub-nanoliter droplet-based 30. Zheng Y, Karimi-Maleh H, Fu L, 2022, Advances in
bioprinting. Int J Bioprint, 8(1): 424. electrochemical techniques for the detection and analysis
of genetically modified organisms: An analysis based on
16. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization- bibliometrics. Chemosensors, 10(5): 194.
based bioprinting—Process, materials, applications and
regulatory challenges. Biofabrication, 12(2): 022001. https://doi.org/10.3390/chemosensors10050194
Volume 9 Issue 2 (2023) 63 http://doi.org/10.18063/ijb.v9i2.653

