Page 222 - IJB-9-3
P. 222
International Journal of Bioprinting Dual ions mixed GelMA for hair follicle regeneration
9. Wang X, Gao L, Han Y, et al., 2018, Silicon-enhanced and improves implanting survival in diabetic wounds. Burns
adipogenesis and angiogenesis for vascularized adipose Trauma, 10:tkac001.
tissue engineering. Adv Sci, 5(11):1800776.
https://doi.org/10.1093/burnst/tkac001
https://doi.org/10.1002/advs.201800776
20. Galiano RD, Michaels J, Dobryansky M, et al., 2004,
10. Li H, He J, Yu H, et al., 2016, Bioglass promotes wound Quantitative and reproducible murine model of excisional
healing by affecting gap junction connexin 43 mediated wound healing. Wound Repair Regen, 12(4):485–492.
endothelial cell behavior. Biomaterials, 84:64–75.
https://doi.org/10.1111/j.1067-1927.2004.12404.x
https://doi.org/10.1016/j.biomaterials.2016.01.033 21. Yao B, Wang R, Wang Y, et al., 2020, Biochemical and
11. Sun Y, You Y, Jiang W, et al., 2020, 3D bioprinting dual- structural cues of 3D-printed matrix synergistically direct
factor releasing and gradient-structured constructs ready MSC differentiation for functional sweat gland regeneration.
to implant for anisotropic cartilage regeneration. Sci Adv, Sci Adv, 6(10):eaaz1094.
6(37):eaay1422. https://doi.org/10.1126/sciadv.aaz1094
https://doi.org/10.1126/sciadv.aay1422 22. Gianni-Barrera R, Butschkau A, Uccelli A, et al., 2018,
12. Kong L, Wu Z, Zhao H, et al., 2018, Bioactive injectable PDGF-BB regulates splitting angiogenesis in skeletal
hydrogels containing desferrioxamine and bioglass for muscle by limiting VEGF-induced endothelial proliferation.
diabetic wound healing. ACS Appl Mater Interfaces, Angiogenesis, 21(4):883–900.
10(36):30103–30114. https://doi.org/10.1007/s10456-018-9634-5
https://doi.org/10.1021/acsami.8b09191 23. Yano K, Brown LF, Detmar M, 2001, Control of hair growth
13. Yue K, Santiago GT, Alvarez MM, et al., 2015, Synthesis, and follicle size by VEGF-mediated angiogenesis. J Clin
properties, and biomedical applications of gelatin Invest, 107(4):409–417.
methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271. https://doi.org/10.1172/jci11317
https://doi.org/10.1016/j.biomaterials.2015.08.045 24. Fredriksson I, Larsson M, Strömberg T, 2009, Measurement
14. Duan X, Yuan X, Yao B, et al., 2022, The role of CTHRC1 depth and volume in laser Doppler flowmetry. Microvasc
in promotion of cutaneous wound healing. Signal Transduct Res, 78(1):4–13.
Target Ther, 7(1):183. https://doi.org/10.1016/j.mvr.2009.02.008
https://doi.org/10.1038/s41392-022-01008-9 25. Abbasi S, Sinha S, Labit E, et al., 2020, Distinct regulatory
15. Yuan X, Duan X, Enhejirigala, et al., 2023, Reciprocal programs control the latent regenerative potential of dermal
interaction between vascular niche and sweat gland fibroblasts during wound healing. Cell Stem Cell, 27(3):
promotes sweat gland regeneration. Bioact Mater, 21: 396–412.
340–357. https://doi.org/10.1016/j.stem.2020.07.008
https://doi.org/10.1016/j.bioactmat.2022.08.021 26. Brewer CM, Nelson BR, Wakenight P, et al., 2021,
16. Hu T, Cui X, Zhu M, et al., 2020, 3D-printable supramolecular Adaptations in Hippo-Yap signaling and myofibroblast fate
hydrogels with shear-thinning property: Fabricating underlie scar-free ear appendage wound healing in spiny
strength tunable bioink via dual crosslinking. Bioact Mater, mice. Dev Cell, 56(19):2722–2740.
5(4):808–818. https://doi.org/10.1016/j.devcel.2021.09.008
https://doi.org/10.1016/j.bioactmat.2020.06.001 27. Fernandes KJ, McKenzie IA, Mill P, et al., 2004, A dermal
17. Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of niche for multipotent adult skin-derived precursor cells. Nat
bio-inspired 3D tissue constructs for skin regeneration. Cell Biol, 6(11):1082–1093.
Biomaterials, 258:120287. https://doi.org/10.1038/ncb1181
https://doi.org/10.1016/j.biomaterials.2020.120287 28. Grellier M, Bordenave L, Amedee J, 2009, Cell-to-cell
18. Chen M, Wu Y, Chen B, et al., 2022, Fast, strong, and communication between osteogenic and endothelial
reversible adhesives with dynamic covalent bonds for lineages: implications for tissue engineering. Trends
potential use in wound dressing. Proc Natl Acad Sci U S A, Biotechnol, 27(10):562–571.
119(29):e2203074119. https://doi.org/10.1016/j.tibtech.2009.07.001
https://doi.org/10.1073/pnas.2203074119 29. Griffin DR, Archang MM, Kuan CH, et al., 2020, Activating an
19. Xia S, Weng T, Jin R, et al., 2022, Curcumin-incorporated 3D adaptive immune response from a hydrogel scaffold imparts
bioprinting gelatin methacryloyl hydrogel reduces reactive regenerative wound healing. Nat Mater, 20(4):560–569.
oxygen species-induced adipose-derived stem cell apoptosis https://doi.org/10.1038/s41563-020-00844-w
Volume 9 Issue 3 (2023) 214 https://doi.org/10.18063/ijb.703

