Page 223 - IJB-9-3
P. 223
International Journal of Bioprinting Dual ions mixed GelMA for hair follicle regeneration
30. DiPietro LA, 2013, Angiogenesis and scar formation in 39. Harn HI, Wang SP, Lai YC, et al., 2021, Symmetry breaking of
healing wounds. Curr Opin Rheumatol, 25(1):87–91. tissue mechanics in wound induced hair follicle regeneration
https://doi.org/10.1097/BOR.0b013e32835b13b6 of laboratory and spiny mice. Nat Commun, 12(1):2595.
31. Shabbir A, Cox A, Rodriguez-Menocal L, et al., 2015, https://doi.org/10.1038/s41467-021-22822-9
Mesenchymal stem cell exosomes induce proliferation and 40. Zhai W, Lu H, Chen L, et al., 2012, Silicate bioceramics
migration of normal and chronic wound fibroblasts, and
enhance angiogenesis in vitro. Stem Cells Dev, 24(14):1635– induce angiogenesis during bone regeneration. Acta
Biomater, 8(1):341–349.
1647.
https://doi.org/10.1089/scd.2014.0316 https://doi.org/10.1016/j.actbio.2011.09.008
32. Rezza A, Sennett R, Tanguy M, et al., 2015, PDGF signalling 41. Xue Y, Lim CH, Plikus MV, et al., 2022, Wound-induced
in the dermis and in dermal condensates is dispensable hair neogenesis model. J Invest Dermatol, 142(10):2565–
for hair follicle induction and formation. Exp Dermatol, 2569.
24(6):468–470.
https://doi.org/10.1016/j.jid.2022.07.013
https://doi.org/10.1111/exd.12672
42. Gay D, Kwon O, Zhang Z, et al., 2013, Fgf9 from dermal
33. Richardson GD, Bazzi H, Fantauzzo KA, et al., 2009, gammadelta T cells induces hair follicle neogenesis after
KGF and EGF signalling block hair follicle induction and wounding. Nat Med, 19(7):916–923.
promote interfollicular epidermal fate in developing mouse
skin. Development, 136(13):2153–2164. https://doi.org/10.1038/nm.3181
https://doi.org/10.1242/dev.031427 43. Chueh SC, Lin SJ, Chen CC, et al., 2013, Therapeutic
34. Veith AP, Henderson K, Spencer A, et al., 2019, Therapeutic strategy for hair regeneration: Hair cycle activation,
strategies for enhancing angiogenesis in wound healing. Adv niche environment modulation, wound-induced follicle
Drug Deliv Rev, 146:97–125. neogenesis, and stem cell engineering. Expert Opin Biol
Ther, 13(3):377–391.
https://doi.org/10.1016/j.addr.2018.09.010
35. Roche B, Vanden-Bossche A, Normand M, et al., 2013, https://doi.org/10.1517/14712598.2013.739601
Validated laser Doppler protocol for measurement of mouse 44. Li KN, Tumbar T, 2021, Hair follicle stem cells as a skin-
bone blood perfusion—Response to age or ovariectomy organizing signaling center during adult homeostasis. Embo
differs with genetic background. Bone, 55(2):418–426. J, 40(11):e107135.
https://doi.org/10.1016/j.bone.2013.03.022
https://doi.org/10.15252/embj.2020107135
36. Choi YS, Zhang Y, Xu M, et al., 2013, Distinct functions for
Wnt/β-catenin in hair follicle stem cell proliferation and 45. Guerra A, Belinha J, Jorge RN, 2018, Modelling skin wound
survival and interfollicular epidermal homeostasis. Cell healing angiogenesis: A review. J Theor Biol, 459:1–17.
Stem Cell, 13(6):720–733. https://doi.org/10.1016/j.jtbi.2018.09.020
https://doi.org/10.1016/j.stem.2013.10.003
46. Bin BH, Bhin J, Takaishi M, et al., 2017, Requirement of zinc
37. Plikus MV, Mayer JA, de la Cruz D, et al., 2008, Cyclic transporter ZIP10 for epidermal development: Implication
dermal BMP signalling regulates stem cell activation during of the ZIP10-p63 axis in epithelial homeostasis. Proc Natl
hair regeneration. Nature, 451(7176):340–344. Acad Sci U S A, 114(46):12243–12248.
https://doi.org/10.1038/nature06457 https://doi.org/10.1073/pnas.1710726114
38. Zhang L, Wang WH, Jin JY, et al., 2019, Induction of hair
follicle neogenesis with cultured mouse dermal papilla cells 47. Ma Y, Lin M, Huang G, et al., 2018, 3D Spatiotemporal
in de novo regenerated skin tissues. J Tissue Eng Regen Med, mechanical microenvironment: A hydrogel-based platform
13(9):1641–1650. for guiding stem cell fate. Adv Mater, 30(49):e1705911.
https://doi.org/10.1002/term.2918 https://doi.org/10.1002/adma.201705911
Volume 9 Issue 3 (2023) 215 https://doi.org/10.18063/ijb.703

