Page 240 - IJB-9-3
P. 240

International Journal of Bioprinting                Biomaterials for vascularized and innervated tissue regeneration



               regulated stroma-derived RANKL expression both in vitro   50.  Hecking I, Stegemann LN, Theis V, et al., 2022,
               and in vivo. PLoS One, 7(10):e46287.               Neuroprotective effects of VEGF in the enteric nervous
                                                                  system. Int J Mol Sci, 23(12):6756.
               https://doi.org/10.1371/journal.pone.0046287
                                                                  https://doi.org/10.3390/ijms23126756
            39.  Cai X-x, Luo E, Yuan Q, 2010, Interaction between schwann
               cells and osteoblasts in vitro. Int J Oral Sci, 2(2):74–81.  51.  Huang Y, Zhang L, Ji Y, et al., 2023, A non-invasive smart
                                                                  scaffold for bone repair and monitoring.  Bioact Mater,
               https://doi.org/10.4248/ijos10039
                                                                  19:499–510.
            40.  Jones RE, Salhotra A, Robertson KS, et al., 2019, Skeletal   https://doi.org/10.1016/j.bioactmat.2022.04.034
               stem cell-schwann cell circuitry in mandibular repair. Cell
               Rep, 28(11):2757–2766.e5.                       52.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
                                                                  challenges of translational 3D bioprinting. Nat Biomed Eng,
               https://doi.org/10.1016/j.celrep.2019.08.021
                                                                  4(4):370–380.
            41.  Samandari M, Quint J, Rodriguez-delaRosa A, et al., 2022,
               Bioinks and bioprinting strategies for skeletal muscle tissue   https://doi.org/10.1038/s41551-019-0471-7
               engineering. Adv Mater, 34(12):21105883.        53.  Cheng L, Cai Z, Ye T, et al., 2020, Injectable polypeptide-
                                                                  protein hydrogels for promoting infected wound healing.
               https://doi.org/10.1002/adma.202105883
                                                                  Adv Funct Mater, 30(25):2001196.
            42.  Gilbert-Honick J, Iyer  SR, Somers SM, et al., 2020,
               Engineering 3D skeletal muscle primed for neuromuscular   https://doi.org/10.1002/adfm.202001196
               regeneration following volumetric muscle loss. Biomaterials,   54.  Yang H, Lai C, Xuan C, et al., 2020, Integrin-binding pro-
               255:120154.                                        survival peptide  engineered silk fibroin  nanosheets  for
                                                                  diabetic wound healing and skin regeneration. Chem Eng J,
               https://doi.org/10.1016/j.biomaterials.2020.120154
                                                                  398:125617.
            43.  Raffa P, Easler M, Urciuolo A, 2022, Three-dimensional in
               vitro models of neuromuscular tissue.  Neural Regen Res,   https://doi.org/10.1016/j.cej.2020.125617
               17(4):759–766.                                  55.  Yao S, Wang Y, Chi J, et al., 2022, Porous MOF microneedle
                                                                  array patch with photothermal responsive nitric oxide
               https://doi.org/10.4103/1673-5374.322447
                                                                  delivery for wound healing. Adv Sci, 9(3):2103449.
            44.  Carmeliet  P, 2003, Blood vessels and nerves: Common
               signals, pathways and diseases. Nat Rev Genet, 4(9):710–720.  https://doi.org/10.1002/advs.202103449
                                                               56.  Chen H, Guo Y, Zhang Z, et al., 2022, Symbiotic algae-
               https://doi.org/10.1038/nrg1158
                                                                  bacteria  dressing  for  producing  hydrogen  to accelerate
            45.  Carmeliet P, Tessier-Lavigne M, 2005, Common mechanisms   diabetic wound healing. Nano Lett, 22(1):229–237.
               of nerve and blood vessel wiring.  Nature, 436(7048):
               193–200.                                           https://doi.org/10.1021/acs.nanolett.1c03693
                                                               57.  Yao S, Chi J, Wang Y, et al., 2021, Zn-MOF encapsulated
               https://doi.org/10.1038/nature03875
                                                                  antibacterial and degradable microneedles array for promoting
            46.  Morotti M, Vincent K, Brawn J, et al., 2014, Peripheral   wound healing. Adv Healthc Mater, 10(12):2100056.
               changes in endometriosis-associated pain.  Hum  Reprod   https://doi.org/10.1002/adhm.202100056
               Update, 20(5):717–736.
                                                               58.  Yin  M,  Wu  J,  Deng  M, et al.,  2021,  Multifunctional
               https://doi.org/10.1093/humupd/dmu021
                                                                  magnesium  organic  framework-based  microneedle
            47.  Raab S, Plate KH, 2007, Different networks, common growth   patch for accelerating diabetic wound healing.  Acs Nano,
               factors: Shared growth factors and receptors of the vascular   15(11):17842–17853.
               and the nervous system. Acta Neuropathol, 113(6):607–626.
                                                                  https://doi.org/10.1021/acsnano.1c06036
               https://doi.org/10.1007/s00401-007-0228-3
                                                               59.  Deng  Z, Li  M, Hu  Y, et al., 2021,  Injectable  biomimetic
            48.  Troullinaki M, Alexaki V-I,  Mitroulis I, et al., 2019,   hydrogels encapsulating Gold/metal-organic frameworks
               Nerve growth factor regulates endothelial cell survival   nanocomposites for enhanced antibacterial and wound
               and pathological retinal angiogenesis.  J Cell Mol Med,   healing activity under visible light actuation. Chem Eng J,
               23(4):2362–2371.                                   420:129668.
               https://doi.org/10.1111/jcmm.14002                 https://doi.org/10.1016/j.cej.2021.129668
            49.  Emanueli C, Salis MB, Pinna A, et al., 2002, Nerve growth   60.  Xiao J, Zhu Y, Huddleston S, et al., 2018, Copper metal-organic
               factor promotes angiogenesis and arteriogenesis in ischemic   framework  nanoparticles  stabilized  with  folic acid  improve
               hindlimbs. Circulation, 106(17):2257–2262.         wound healing in diabetes. ACS Nano, 12(2):1023–1032.
               https://doi.org/10.1161/01.CIR.0000033971.56802.C5  https://doi.org/10.1021/acsnano.7b01850


            Volume 9 Issue 3 (2023)                        232                         https://doi.org/10.18063/ijb.706
   235   236   237   238   239   240   241   242   243   244   245