Page 240 - IJB-9-3
P. 240
International Journal of Bioprinting Biomaterials for vascularized and innervated tissue regeneration
regulated stroma-derived RANKL expression both in vitro 50. Hecking I, Stegemann LN, Theis V, et al., 2022,
and in vivo. PLoS One, 7(10):e46287. Neuroprotective effects of VEGF in the enteric nervous
system. Int J Mol Sci, 23(12):6756.
https://doi.org/10.1371/journal.pone.0046287
https://doi.org/10.3390/ijms23126756
39. Cai X-x, Luo E, Yuan Q, 2010, Interaction between schwann
cells and osteoblasts in vitro. Int J Oral Sci, 2(2):74–81. 51. Huang Y, Zhang L, Ji Y, et al., 2023, A non-invasive smart
scaffold for bone repair and monitoring. Bioact Mater,
https://doi.org/10.4248/ijos10039
19:499–510.
40. Jones RE, Salhotra A, Robertson KS, et al., 2019, Skeletal https://doi.org/10.1016/j.bioactmat.2022.04.034
stem cell-schwann cell circuitry in mandibular repair. Cell
Rep, 28(11):2757–2766.e5. 52. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
challenges of translational 3D bioprinting. Nat Biomed Eng,
https://doi.org/10.1016/j.celrep.2019.08.021
4(4):370–380.
41. Samandari M, Quint J, Rodriguez-delaRosa A, et al., 2022,
Bioinks and bioprinting strategies for skeletal muscle tissue https://doi.org/10.1038/s41551-019-0471-7
engineering. Adv Mater, 34(12):21105883. 53. Cheng L, Cai Z, Ye T, et al., 2020, Injectable polypeptide-
protein hydrogels for promoting infected wound healing.
https://doi.org/10.1002/adma.202105883
Adv Funct Mater, 30(25):2001196.
42. Gilbert-Honick J, Iyer SR, Somers SM, et al., 2020,
Engineering 3D skeletal muscle primed for neuromuscular https://doi.org/10.1002/adfm.202001196
regeneration following volumetric muscle loss. Biomaterials, 54. Yang H, Lai C, Xuan C, et al., 2020, Integrin-binding pro-
255:120154. survival peptide engineered silk fibroin nanosheets for
diabetic wound healing and skin regeneration. Chem Eng J,
https://doi.org/10.1016/j.biomaterials.2020.120154
398:125617.
43. Raffa P, Easler M, Urciuolo A, 2022, Three-dimensional in
vitro models of neuromuscular tissue. Neural Regen Res, https://doi.org/10.1016/j.cej.2020.125617
17(4):759–766. 55. Yao S, Wang Y, Chi J, et al., 2022, Porous MOF microneedle
array patch with photothermal responsive nitric oxide
https://doi.org/10.4103/1673-5374.322447
delivery for wound healing. Adv Sci, 9(3):2103449.
44. Carmeliet P, 2003, Blood vessels and nerves: Common
signals, pathways and diseases. Nat Rev Genet, 4(9):710–720. https://doi.org/10.1002/advs.202103449
56. Chen H, Guo Y, Zhang Z, et al., 2022, Symbiotic algae-
https://doi.org/10.1038/nrg1158
bacteria dressing for producing hydrogen to accelerate
45. Carmeliet P, Tessier-Lavigne M, 2005, Common mechanisms diabetic wound healing. Nano Lett, 22(1):229–237.
of nerve and blood vessel wiring. Nature, 436(7048):
193–200. https://doi.org/10.1021/acs.nanolett.1c03693
57. Yao S, Chi J, Wang Y, et al., 2021, Zn-MOF encapsulated
https://doi.org/10.1038/nature03875
antibacterial and degradable microneedles array for promoting
46. Morotti M, Vincent K, Brawn J, et al., 2014, Peripheral wound healing. Adv Healthc Mater, 10(12):2100056.
changes in endometriosis-associated pain. Hum Reprod https://doi.org/10.1002/adhm.202100056
Update, 20(5):717–736.
58. Yin M, Wu J, Deng M, et al., 2021, Multifunctional
https://doi.org/10.1093/humupd/dmu021
magnesium organic framework-based microneedle
47. Raab S, Plate KH, 2007, Different networks, common growth patch for accelerating diabetic wound healing. Acs Nano,
factors: Shared growth factors and receptors of the vascular 15(11):17842–17853.
and the nervous system. Acta Neuropathol, 113(6):607–626.
https://doi.org/10.1021/acsnano.1c06036
https://doi.org/10.1007/s00401-007-0228-3
59. Deng Z, Li M, Hu Y, et al., 2021, Injectable biomimetic
48. Troullinaki M, Alexaki V-I, Mitroulis I, et al., 2019, hydrogels encapsulating Gold/metal-organic frameworks
Nerve growth factor regulates endothelial cell survival nanocomposites for enhanced antibacterial and wound
and pathological retinal angiogenesis. J Cell Mol Med, healing activity under visible light actuation. Chem Eng J,
23(4):2362–2371. 420:129668.
https://doi.org/10.1111/jcmm.14002 https://doi.org/10.1016/j.cej.2021.129668
49. Emanueli C, Salis MB, Pinna A, et al., 2002, Nerve growth 60. Xiao J, Zhu Y, Huddleston S, et al., 2018, Copper metal-organic
factor promotes angiogenesis and arteriogenesis in ischemic framework nanoparticles stabilized with folic acid improve
hindlimbs. Circulation, 106(17):2257–2262. wound healing in diabetes. ACS Nano, 12(2):1023–1032.
https://doi.org/10.1161/01.CIR.0000033971.56802.C5 https://doi.org/10.1021/acsnano.7b01850
Volume 9 Issue 3 (2023) 232 https://doi.org/10.18063/ijb.706

