Page 241 - IJB-9-3
P. 241

International Journal of Bioprinting                Biomaterials for vascularized and innervated tissue regeneration



            61.  Zhao X, Wu H, Guo B, et al., 2017, Antibacterial anti-oxidant   72.  Hu Y, Wu B, Xiong Y, et al., 2021, Cryogenic 3D printed
               electroactive  injectable  hydrogel  as  self-healing  wound   hydrogel scaffolds loading exosomes accelerate diabetic
               dressing with hemostasis and adhesiveness for cutaneous   wound healing. Chem Eng J, 426:130634.
               wound healing. Biomaterials, 122:34–47.
                                                                  https://doi.org/10.1016/j.cej.2021.130634
               https://doi.org/10.1016/j.biomaterials.2017.01.011
                                                               73.  Thapa RK,  Diep  DB, Tonnesen HH,  2020, Topical
            62.  Ibanez RIR, do Amaral RJFC, Simpson CR, et al., 2022, 3D   antimicrobial peptide formulations for wound healing:
               printed scaffolds incorporated with platelet-rich plasma   Current developments and future prospects. Acta Biomater,
               show enhanced angiogenic potential while not inducing   103:52–67.
               fibrosis. Adv Funct Mater, 32(10):2109915.
                                                                  https://doi.org/10.1016/j.actbio.2019.12.025
               https://doi.org/10.1002/adfm.202109915
                                                               74.  Chu B, He J-m, Wang Z, et  al., 2021, Proangiogenic
            63.  Wang X, Yu Y, Yang C, et al., 2022, Dynamically responsive   peptide nanofiber hydrogel/3D printed scaffold for dermal
               scaffolds  from  microfluidic  3D  printing  for  skin  flap   regeneration. Chem Eng J, 424:128146.
               regeneration. Adv Sci, 9(22):2201155.
                                                                  https://doi.org/10.1016/j.cej.2020.128146
               https://doi.org/10.1002/advs.202201155
                                                               75.  Yu  Q,  Han  Y,  Tian  T, et al.,  2019,  Chinese  sesame  stick-
            64.  Alizadehgiashi  M,  Nemr  CR, Chekini  M,  et al.,  2021,   inspired nano-fibrous scaffolds for tumor therapy and skin
               Multifunctional 3D-printed wound dressings.  ACS Nano,   tissue reconstruction. Biomaterials, 194:25–35.
               15(7):12375–12387.
                                                                  https://doi.org/10.1016/j.biomaterials.2018.12.012
               https://doi.org/10.1021/acsnano.1c04499
                                                               76.  Yu  Q,  Han  Y,  Wang  X, et al.,  2018,  Copper  silicate
            65.  Singh S, Choudhury D, Yu F, et al., 2020, In situ bioprinting—  hollow microspheres-incorporated scaffolds for chemo-
               Bioprinting from benchside to bedside?  Acta Biomater,   photothermal therapy of melanoma and tissue healing. ACS
               101:14-25.                                         Nano, 12(3):2695–2707.
               https://doi.org/10.1016/j.actbio.2019.08.045
                                                                  https://doi.org/10.1021/acsnano.7b08928
            66.  Kong L, Wu Z, Zhao H, et al., 2018, Bioactive injectable   77.  Wang X, Xue J, Ma B, et al., 2020, Black bioceramics:
               hydrogels containing desferrioxamine and bioglass   Combining regeneration with therapy.  Adv Mater,
               for diabetic wound healing.  ACS Appl Mater Interface,   32(48):2005140.
               10(36):30103–30114.
                                                                  https://doi.org/10.1002/adma.202005140
               https://doi.org/10.1021/acsami.8b09191
                                                               78.  Xu  C, Xu Y,  Yang M,  et al., 2020,  Black-phosphorus-
            67.  Albanna  M,  Binder  KW, Murphy SV, et al.,  2019, In situ
               bioprinting of autologous skin cells accelerates wound   incorporated hydrogel as a conductive and biodegradable
                                                                  platform for enhancement of the neural differentiation of
               healing of extensive excisional full-thickness wounds.  Sci   mesenchymal stem cells. Adv Funct Mater, 30(39):2000177.
               Rep, 9:1856.
                                                                  https://doi.org/10.1002/adfm.202000177
               https://doi.org/10.1038/s41598-018-38366-w
            68.  Hakimi N, Cheng R, Leng L, et al., 2018, Handheld skin   79.  Saghiri MA, Asatourian A, Orangi J, et al., 2015, Functional
               printer: In situ formation of planar biomaterials and tissues.   role of inorganic trace elements in angiogenesis-Part I:
               Lab Chip, 18(10):1440–1451.                        N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol, 96(1):
                                                                  129–142.
               https://doi.org/10.1039/c7lc01236e
                                                                  https://dx.doi.org/10.1016/j.critrevonc.2015.05.010
            69.  Nuutila K, Samandari M, Endo Y, et al., 2022, In vivo printing
               of growth factor-eluting adhesive scaffolds improves wound   80.  Ma  W,  Ma  H,  Qiu  P, et al.,  2021,  Sprayable  beta-FeSi2
               healing. Bioact Mater, 8:296–308.                  composite hydrogel for portable skin tumor treatment and
                                                                  wound healing. Biomaterials, 279:121225.
               https://doi.org/10.1016/j.bioactmat.2021.06.030
                                                                  https://doi.org/10.1016/j.biomaterials.2021.121225
            70.  Phan J, Kumar P, Hao D, et al., 2018, Engineering mesenchymal
               stem cells to improve their exosome efficacy and yield for cell-  81.  Sheng L, Zhang Z, Zhang Y, et al., 2021, A novel “hot spring”-
               free therapy. J Extracell Vesicles, 7(1):1522236.  mimetic hydrogel with excellent angiogenic properties for
                                                                  chronic wound healing. Biomaterials, 264:120414.
               https://doi.org/10.1080/20013078.2018.1522236
                                                                  https://doi.org/10.1016/j.biomaterials.2020.120414
            71.  Hu Y, Tao R, Chen L, et al., 2021, Exosomes derived from
               pioglitazone-pretreated MSCs accelerate diabetic wound   82.  Ma J, Wu J, Zhang H, et al., 2022, 3D printing of diatomite
               healing through enhancing angiogenesis. J Nanobiotechnol,   incorporated composite scaffolds for skin repair of deep
               19(1):150.                                         burn wounds. Int J Bioprint, 8(3):163–175.
               https://doi.org/10.1186/s12951-021-00894-5         https://doi.org/10.18063/ijb.v8i3.580


            Volume 9 Issue 3 (2023)                        233                         https://doi.org/10.18063/ijb.706
   236   237   238   239   240   241   242   243   244   245   246