Page 241 - IJB-9-3
P. 241
International Journal of Bioprinting Biomaterials for vascularized and innervated tissue regeneration
61. Zhao X, Wu H, Guo B, et al., 2017, Antibacterial anti-oxidant 72. Hu Y, Wu B, Xiong Y, et al., 2021, Cryogenic 3D printed
electroactive injectable hydrogel as self-healing wound hydrogel scaffolds loading exosomes accelerate diabetic
dressing with hemostasis and adhesiveness for cutaneous wound healing. Chem Eng J, 426:130634.
wound healing. Biomaterials, 122:34–47.
https://doi.org/10.1016/j.cej.2021.130634
https://doi.org/10.1016/j.biomaterials.2017.01.011
73. Thapa RK, Diep DB, Tonnesen HH, 2020, Topical
62. Ibanez RIR, do Amaral RJFC, Simpson CR, et al., 2022, 3D antimicrobial peptide formulations for wound healing:
printed scaffolds incorporated with platelet-rich plasma Current developments and future prospects. Acta Biomater,
show enhanced angiogenic potential while not inducing 103:52–67.
fibrosis. Adv Funct Mater, 32(10):2109915.
https://doi.org/10.1016/j.actbio.2019.12.025
https://doi.org/10.1002/adfm.202109915
74. Chu B, He J-m, Wang Z, et al., 2021, Proangiogenic
63. Wang X, Yu Y, Yang C, et al., 2022, Dynamically responsive peptide nanofiber hydrogel/3D printed scaffold for dermal
scaffolds from microfluidic 3D printing for skin flap regeneration. Chem Eng J, 424:128146.
regeneration. Adv Sci, 9(22):2201155.
https://doi.org/10.1016/j.cej.2020.128146
https://doi.org/10.1002/advs.202201155
75. Yu Q, Han Y, Tian T, et al., 2019, Chinese sesame stick-
64. Alizadehgiashi M, Nemr CR, Chekini M, et al., 2021, inspired nano-fibrous scaffolds for tumor therapy and skin
Multifunctional 3D-printed wound dressings. ACS Nano, tissue reconstruction. Biomaterials, 194:25–35.
15(7):12375–12387.
https://doi.org/10.1016/j.biomaterials.2018.12.012
https://doi.org/10.1021/acsnano.1c04499
76. Yu Q, Han Y, Wang X, et al., 2018, Copper silicate
65. Singh S, Choudhury D, Yu F, et al., 2020, In situ bioprinting— hollow microspheres-incorporated scaffolds for chemo-
Bioprinting from benchside to bedside? Acta Biomater, photothermal therapy of melanoma and tissue healing. ACS
101:14-25. Nano, 12(3):2695–2707.
https://doi.org/10.1016/j.actbio.2019.08.045
https://doi.org/10.1021/acsnano.7b08928
66. Kong L, Wu Z, Zhao H, et al., 2018, Bioactive injectable 77. Wang X, Xue J, Ma B, et al., 2020, Black bioceramics:
hydrogels containing desferrioxamine and bioglass Combining regeneration with therapy. Adv Mater,
for diabetic wound healing. ACS Appl Mater Interface, 32(48):2005140.
10(36):30103–30114.
https://doi.org/10.1002/adma.202005140
https://doi.org/10.1021/acsami.8b09191
78. Xu C, Xu Y, Yang M, et al., 2020, Black-phosphorus-
67. Albanna M, Binder KW, Murphy SV, et al., 2019, In situ
bioprinting of autologous skin cells accelerates wound incorporated hydrogel as a conductive and biodegradable
platform for enhancement of the neural differentiation of
healing of extensive excisional full-thickness wounds. Sci mesenchymal stem cells. Adv Funct Mater, 30(39):2000177.
Rep, 9:1856.
https://doi.org/10.1002/adfm.202000177
https://doi.org/10.1038/s41598-018-38366-w
68. Hakimi N, Cheng R, Leng L, et al., 2018, Handheld skin 79. Saghiri MA, Asatourian A, Orangi J, et al., 2015, Functional
printer: In situ formation of planar biomaterials and tissues. role of inorganic trace elements in angiogenesis-Part I:
Lab Chip, 18(10):1440–1451. N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol, 96(1):
129–142.
https://doi.org/10.1039/c7lc01236e
https://dx.doi.org/10.1016/j.critrevonc.2015.05.010
69. Nuutila K, Samandari M, Endo Y, et al., 2022, In vivo printing
of growth factor-eluting adhesive scaffolds improves wound 80. Ma W, Ma H, Qiu P, et al., 2021, Sprayable beta-FeSi2
healing. Bioact Mater, 8:296–308. composite hydrogel for portable skin tumor treatment and
wound healing. Biomaterials, 279:121225.
https://doi.org/10.1016/j.bioactmat.2021.06.030
https://doi.org/10.1016/j.biomaterials.2021.121225
70. Phan J, Kumar P, Hao D, et al., 2018, Engineering mesenchymal
stem cells to improve their exosome efficacy and yield for cell- 81. Sheng L, Zhang Z, Zhang Y, et al., 2021, A novel “hot spring”-
free therapy. J Extracell Vesicles, 7(1):1522236. mimetic hydrogel with excellent angiogenic properties for
chronic wound healing. Biomaterials, 264:120414.
https://doi.org/10.1080/20013078.2018.1522236
https://doi.org/10.1016/j.biomaterials.2020.120414
71. Hu Y, Tao R, Chen L, et al., 2021, Exosomes derived from
pioglitazone-pretreated MSCs accelerate diabetic wound 82. Ma J, Wu J, Zhang H, et al., 2022, 3D printing of diatomite
healing through enhancing angiogenesis. J Nanobiotechnol, incorporated composite scaffolds for skin repair of deep
19(1):150. burn wounds. Int J Bioprint, 8(3):163–175.
https://doi.org/10.1186/s12951-021-00894-5 https://doi.org/10.18063/ijb.v8i3.580
Volume 9 Issue 3 (2023) 233 https://doi.org/10.18063/ijb.706

