Page 242 - IJB-9-3
P. 242
International Journal of Bioprinting Biomaterials for vascularized and innervated tissue regeneration
83. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and 94. Xu X-H, Yuan T-J, Dad HA, et al., 2021, Plant exosomes
organs. Nat Biotech, 32(8):773–785. as novel nanoplatforms for microRNA transfer stimulate
https://doi.org/10.1038/nbt.2958 neural differentiation of stem cells in vitro and in vivo. Nano
Lett, 21(19):8151–8159.
84. Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of https://doi.org/10.1021/acs.nanolett.1c02530
bio-inspired 3D tissue constructs for skin regeneration.
Biomaterials, 258:120287. 10.1016/j.biomaterials.2020.120287 95. Brokesh AM, Gaharwar AK, 2020, Inorganic biomaterials
for regenerative medicine. ACS Appl Mater Interface,
85. Ma J, Qin C, Wu J, et al., 2021, 3D printing of strontium 12(5):5319–5344.
silicate microcylinder-containing multicellular biomaterial
inks for vascularized skin regeneration. Adv Healthc Mater, https://doi.org/10.1021/acsami.9b17801
10(16):2100523. 96. Sun L, Wang M, Chen S, et al., 2019, Molecularly engineered
https://doi.org/10.1002/adhm.202100523 metal-based bioactive soft materials—Neuroactive
magnesium ion/polymer hybrids. Acta Biomater, 85:
86. Wu J, Qin C, Ma J, et al., 2021, An immunomodulatory 310–319.
bioink with hollow manganese silicate nanospheres for
angiogenesis. Appl Mater Today, 23:101015. https://doi.org/10.1016/j.actbio.2018.12.040
https://doi.org/10.1016/j.apmt.2021.101015 97. Zhang H, Ma W, Ma H, et al., 2022, Spindle-like zinc silicate
nanoparticles accelerating innervated and vascularized skin
87. Fan L, Xiao C, Guan P, et al., 2022, Extracellular matrix- burn wound healing. Adv Healthc Mater, 11(10):2102359.
based conductive interpenetrating network hydrogels
with enhanced neurovascular regeneration properties for https://doi.org/10.1002/adhm.202102359
diabetic wounds repair. Adv Healthc Mater, 11(1):2101556. 98. Li T, Zhai D, Ma B, et al., 2019, 3D printing of hot dog-like
https://doi.org/10.1002/adhm.202101556 biomaterials with hierarchical architecture and distinct
bioactivity. Adv Sci, 6(19):1901146.
88. Wang J, Lin J, Chen L, et al., 2022, Endogenous electric-
field-coupled electrospun short fiber via collecting wound https://doi.org/10.1002/advs.201901146
exudation. Adv Mater, 34(9):2108325. 99. Li Y, Xu J, Mi J, et al., 2021, Biodegradable magnesium
https://doi.org/10.1002/adma.202108325 combined with distraction osteogenesis synergistically
stimulates bone tissue regeneration via CGRP-FAK-VEGF
89. Sebastian A, Volk SW, Halai P, et al., 2017, Enhanced signaling axis. Biomaterials, 275:120984.
neurogenic biomarker expression and reinnervation in
human acute skin wounds treated by electrical stimulation. J https://doi.org/10.1016/j.biomaterials.2021.120984
Investig Dermatol, 137(3):737–747. 100. Li T, Chang J, Zhu Y, et al., 2020, 3D printing of bioinspired
https://doi.org/10.1016/j.jid.2016.09.038 biomaterials for tissue regeneration. Adv Healthc Mater,
9(23):2000208.
90. Emmerson E, 2017, Efficient healing takes some nerve:
Electrical stimulation enhances innervation in cutaneous https://doi.org/10.1002/adhm.202000208
human wounds. J Investig Dermatol, 137(3):543–545. 101. Zhang W, Feng C, Yang G, et al., 2017, 3D-printed scaffolds
https://doi.org/10.1016/j.jid.2016.10.018 with synergistic effect of hollow-pipe structure and bioactive
ions for vascularized bone regeneration. Biomaterials,
91. Tan M-h, Xu X-h, Yuan T-j, et al., 2022, Self-powered smart 135:85–95.
patch promotes skin nerve regeneration and sensation
restoration by delivering biological-electrical signals in https://doi.org/10.1016/j.biomaterials.2017.05.005
program. Biomaterials, 283:121413. 102. Chung JJ, Yoo J, Sum BST, et al., 2021, 3D printed porous
https://doi.org/10.1016/j.biomaterials.2022.121413 methacrylate/silica hybrid scaffold for bone substitution.
Adv Healthc Mater, 10(12):2100117.
92. Peng L-H, Xu X-H, Huang Y-F, et al., 2020, Self-adaptive
all-in-one delivery chip for rapid skin nerves regeneration https://doi.org/10.1002/adhm.202100117
by endogenous mesenchymal stem cells. Adv Funct Mater, 103. Wang C, Lai J, Li K, et al., 2021, Cryogenic 3D printing of
30(40):2001751. dual-delivery scaffolds for improved bone regeneration with
enhanced vascularization. Bioact Mater, 6(1):137–145.
https://doi.org/10.1002/adfm.202001751
https://doi.org/10.1016/j.bioactmat.2020.07.007
93. Qian Z, Wang H, Bai Y, et al., 2020, Improving chronic
diabetic wound healing through an injectable and self- 104. Byambaa B, Annabi N, Yue K, et al., 2017, Bioprinted
healing hydrogel with platelet-rich plasma release. ACS Appl osteogenic and vasculogenic patterns for engineering 3D
Mater Interface, 12(50):55659-55674. bone tissue. Adv Healthc Mater, 6(16):1700015.
https://doi.org/10.1021/acsami.0c17142 https://doi.org/10.1002/adhm.201700015
Volume 9 Issue 3 (2023) 234 https://doi.org/10.18063/ijb.706

