Page 242 - IJB-9-3
P. 242

International Journal of Bioprinting                Biomaterials for vascularized and innervated tissue regeneration



            83.  Murphy SV, Atala A, 2014, 3D bioprinting of tissues and   94.  Xu X-H, Yuan T-J, Dad HA, et al., 2021, Plant exosomes
               organs. Nat Biotech, 32(8):773–785.                as novel nanoplatforms for microRNA transfer stimulate
               https://doi.org/10.1038/nbt.2958                   neural differentiation of stem cells in vitro and in vivo. Nano
                                                                  Lett, 21(19):8151–8159.
            84.  Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of   https://doi.org/10.1021/acs.nanolett.1c02530
               bio-inspired 3D tissue constructs for skin regeneration.
               Biomaterials, 258:120287. 10.1016/j.biomaterials.2020.120287  95.  Brokesh AM, Gaharwar AK, 2020, Inorganic biomaterials
                                                                  for regenerative medicine.  ACS Appl Mater Interface,
            85.  Ma J, Qin C, Wu J, et al., 2021, 3D printing of strontium   12(5):5319–5344.
               silicate microcylinder-containing multicellular biomaterial
               inks for vascularized skin regeneration. Adv Healthc Mater,   https://doi.org/10.1021/acsami.9b17801
               10(16):2100523.                                 96.  Sun L, Wang M, Chen S, et al., 2019, Molecularly engineered
               https://doi.org/10.1002/adhm.202100523             metal-based  bioactive  soft  materials—Neuroactive
                                                                  magnesium ion/polymer hybrids.  Acta Biomater, 85:
            86.  Wu J, Qin C, Ma J, et al., 2021, An immunomodulatory   310–319.
               bioink with hollow manganese silicate nanospheres for
               angiogenesis. Appl Mater Today, 23:101015.         https://doi.org/10.1016/j.actbio.2018.12.040
               https://doi.org/10.1016/j.apmt.2021.101015      97.  Zhang H, Ma W, Ma H, et al., 2022, Spindle-like zinc silicate
                                                                  nanoparticles accelerating innervated and vascularized skin
            87.  Fan L, Xiao C, Guan P, et al., 2022, Extracellular matrix-  burn wound healing. Adv Healthc Mater, 11(10):2102359.
               based conductive interpenetrating network hydrogels
               with enhanced neurovascular regeneration properties for   https://doi.org/10.1002/adhm.202102359
               diabetic wounds repair. Adv Healthc Mater, 11(1):2101556.  98.  Li T, Zhai D, Ma B, et al., 2019, 3D printing of hot dog-like
               https://doi.org/10.1002/adhm.202101556             biomaterials with hierarchical architecture and distinct
                                                                  bioactivity. Adv Sci, 6(19):1901146.
            88.  Wang J, Lin J, Chen L,  et al., 2022, Endogenous electric-
               field-coupled electrospun short fiber via collecting wound   https://doi.org/10.1002/advs.201901146
               exudation. Adv Mater, 34(9):2108325.            99.  Li Y, Xu J, Mi J,  et  al., 2021, Biodegradable magnesium
               https://doi.org/10.1002/adma.202108325             combined with distraction osteogenesis synergistically
                                                                  stimulates bone tissue regeneration via CGRP-FAK-VEGF
            89.  Sebastian A, Volk SW, Halai P, et al., 2017, Enhanced   signaling axis. Biomaterials, 275:120984.
               neurogenic biomarker expression and reinnervation in
               human acute skin wounds treated by electrical stimulation. J   https://doi.org/10.1016/j.biomaterials.2021.120984
               Investig Dermatol, 137(3):737–747.              100. Li T, Chang J, Zhu Y, et al., 2020, 3D printing of bioinspired
               https://doi.org/10.1016/j.jid.2016.09.038          biomaterials for tissue regeneration.  Adv Healthc Mater,
                                                                  9(23):2000208.
            90.  Emmerson E, 2017, Efficient healing takes some nerve:
               Electrical  stimulation  enhances  innervation  in  cutaneous   https://doi.org/10.1002/adhm.202000208
               human wounds. J Investig Dermatol, 137(3):543–545.  101. Zhang W, Feng C, Yang G, et al., 2017, 3D-printed scaffolds
               https://doi.org/10.1016/j.jid.2016.10.018          with synergistic effect of hollow-pipe structure and bioactive
                                                                  ions for vascularized bone regeneration.  Biomaterials,
            91.  Tan M-h, Xu X-h, Yuan T-j, et al., 2022, Self-powered smart   135:85–95.
               patch promotes skin nerve regeneration and sensation
               restoration  by  delivering  biological-electrical  signals  in   https://doi.org/10.1016/j.biomaterials.2017.05.005
               program. Biomaterials, 283:121413.              102. Chung JJ, Yoo J, Sum BST, et al., 2021, 3D printed porous
               https://doi.org/10.1016/j.biomaterials.2022.121413  methacrylate/silica hybrid scaffold for bone substitution.
                                                                  Adv Healthc Mater, 10(12):2100117.
            92.  Peng L-H, Xu X-H, Huang Y-F, et al., 2020, Self-adaptive
               all-in-one delivery chip for rapid skin nerves regeneration   https://doi.org/10.1002/adhm.202100117
               by endogenous mesenchymal stem cells. Adv Funct Mater,   103. Wang C, Lai J, Li K, et al., 2021, Cryogenic 3D printing of
               30(40):2001751.                                    dual-delivery scaffolds for improved bone regeneration with
                                                                  enhanced vascularization. Bioact Mater, 6(1):137–145.
               https://doi.org/10.1002/adfm.202001751
                                                                  https://doi.org/10.1016/j.bioactmat.2020.07.007
            93.  Qian Z, Wang H, Bai Y, et al., 2020, Improving chronic
               diabetic wound healing through an injectable and self-  104. Byambaa B, Annabi N, Yue K, et al., 2017, Bioprinted
               healing hydrogel with platelet-rich plasma release. ACS Appl   osteogenic and  vasculogenic  patterns  for engineering  3D
               Mater Interface, 12(50):55659-55674.               bone tissue. Adv Healthc Mater, 6(16):1700015.
               https://doi.org/10.1021/acsami.0c17142             https://doi.org/10.1002/adhm.201700015


            Volume 9 Issue 3 (2023)                        234                         https://doi.org/10.18063/ijb.706
   237   238   239   240   241   242   243   244   245   246   247