Page 244 - IJB-9-3
P. 244

International Journal of Bioprinting                Biomaterials for vascularized and innervated tissue regeneration



            126. Li T, Hou J, Wang L, et al., 2022, Bioprinted anisotropic   134. Choi Y-J, Jun Y-J, Kim D Y, et al., 2019, A 3D cell printed
               scaffolds with fast stress relaxation bioink for engineering   muscle construct with tissue-derived bioink for the
               3D  skeletal  muscle  and  repairing  volumetric  muscle  loss.   treatment of volumetric muscle loss.  Biomaterials, 206:
               Acta Biomater, 156:21–36’.                         160–169.
               https://doi.org/10.1016/j.actbio.2022.08.037       https://doi.org/10.1016/j.biomaterials.2019.03.036
            127. Hwangbo H, Lee H, Jin E-J, et al., 2022, Bio-printing of   135. Qazi TH, Mooney DJ, Pumberger M, et al., 2015,
               aligned GelMa-based cell-laden structure for muscle tissue   Biomaterials based strategies for skeletal muscle tissue
               regeneration. Bioact Mater, 8:57–70.               engineering: Existing technologies and future trends.
                                                                  Biomaterials, 53:502–521.
               https://doi.org/10.1016/j.bioactmat.2021.06.031
                                                                  https://doi.org/10.1016/j.biomaterials.2015.02.110
            128. Kim W, Lee H, Lee C K, et al., 2021, A bioprinting process
               supplemented with in  situ electrical  stimulation directly   136. Lee H, Kim W, Lee J,  et  al., 2021, Self-aligned myofibers
               induces significant myotube formation and myogenesis. Adv   in 3D bioprinted extracellular matrix-based construct
               Funct Mater, 31(51):2105170.                       accelerate skeletal muscle function restoration.  Appl Phys
                                                                  Rev, 8(2):021405.
               https://doi.org/10.1002/adfm.202105170
                                                                  https://doi.org/10.1063/5.0039639
            129.  Panayi AC, Smit L, Hays N, et al., 2020, A porous collagen-GAG
               scaffold promotes muscle regeneration following volumetric   137. Ostrovidov S, Salehi S, Costantini M, et al., 2019, 3D
               muscle loss injury. Wound Repair Regen, 28(1):61–74.  bioprinting in skeletal muscle tissue engineering.  Small,
                                                                  15(24):1805530.
               https://doi.org/10.1111/wrr.12768
                                                                  https://doi.org/10.1002/smll.201805530
            130. Zhang Z, Klausen LH, Chen M, et al., 2018, Electroactive
               scaffolds for neurogenesis and myogenesis: graphene-based   138. Gao G, Cui X, 2016, Three-dimensional bioprinting in
               nanomaterials. Small, 14(48):1801983.              tissue engineering and regenerative medicine. Biotech Lett,
                                                                  38(2):203–211.
               https://doi.org/10.1002/smll.201801983
                                                                  https://doi.org/10.1007/s10529-015-1975-1
            131. Quint JP, Mostafavi A, Endo Y, et al., 2021, In vivo printing
               of nanoenabled scaffolds for the treatment of skeletal muscle   139. Kim JH, Kim I, Seol Y-J, et al., 2020, Neural cell integration
               injuries. Adv Healthc Mater, 10(10):2002152.       into 3D bioprinted skeletal muscle constructs accelerates
                                                                  restoration of muscle function. Nat Commun, 11(1):1025.
               https://doi.org/10.1002/adhm.202002152
                                                                  https://doi.org/10.1038/s41467-020-14930-9
            132. Said SS, Yin H, Elfarnawany M, et al., 2019, Fortifying
               angiogenesis in ischemic muscle with FGF9-loaded   140. Mi  J,  Xu  J-K,  Yao  Z, et al.,  2022,  Implantable  electrical
               electrospun poly(ester amide) fibers.  Adv Healthc Mater,   stimulation at dorsal root ganglions accelerates osteoporotic
               8(8):1801294.                                      fracture healing via calcitonin gene-related peptide. Adv Sci,
                                                                  9(1):2103005.
               https://doi.org/10.1002/adhm.201801294
                                                                  https://doi.org/10.1002/advs.202103005
            133. Gholobova D, Terrie L, Gerard M, et al., 2020, Vascularization
               of tissue-engineered skeletal muscle constructs. Biomaterials,
               235:119708.
               https://doi.org/10.1016/j.biomaterials.2019.119708























            Volume 9 Issue 3 (2023)                        236                         https://doi.org/10.18063/ijb.706
   239   240   241   242   243   244   245   246   247   248   249