Page 243 - IJB-9-3
P. 243
International Journal of Bioprinting Biomaterials for vascularized and innervated tissue regeneration
105. Piard C, Baker H, Kamalitdinov T, et al., 2019, Bioprinted 116. Han X, Sun M, Chen B, et al., 2021, Lotus seedpod-inspired
osteon-like scaffolds enhance in vivo neovascularization. internal vascularized 3D printed scaffold for bone tissue
Biofabrication, 11(2):025013. repair. Bioact Mater, 6(6):1639–1652.
https://doi.org/10.1088/1758-5090/ab078a https://doi.org/10.1016/j.bioactmat.2020.11.019
106. Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional 117. Gu J, Zhang Q, Geng M, et al., 2021, Construction of
bioprinting of multicell-laden scaffolds containing bone nanofibrous scaffolds with interconnected perfusable
morphogenic protein-4 for promoting M2 macrophage microchannel networks for engineering of vascularized
polarization and accelerating bone defect repair in diabetes bone tissue. Bioact Mater, 6(10):3254–3268.
mellitus. Bioact Mater, 6(3):757–769.
https://doi.org/10.1016/j.bioactmat.2021.02.033
https://doi.org/10.1016/j.bioactmat.2020.08.030
107. Wan Z, Zhang P, Liu Y, et al., 2020, Four-dimensional 118. Ha Y, Ma X, Li S, et al., 2022, Bone microenvironment-
bioprinting: Current developments and applications in bone mimetic scaffolds with hierarchical microstructure for
tissue engineering. Acta Biomater, 101:26–42. enhanced vascularization and bone regeneration. Adv Funct
Mater, 32(20):2200011.
https://doi.org/10.1016/j.actbio.2019.10.038
https://doi.org/10.1002/adfm.202200011
108. Feng C, Zhang W, Deng C, et al., 2017, 3D printing of lotus
root-like biomimetic materials for cell delivery and tissue 119. Yang C, Zheng Z, Younis MR, et al., 2021, 3D printed
regeneration. Adv Sci, 4(12):1700401. enzyme-functionalized scaffold facilitates diabetic bone
regeneration. Adv Funct Mater, 31(20):2101372.
https://doi.org/10.1002/advs.201700401
109. Hann SY, Cui H, Esworthy T, et al., 2021, Dual 3D printing https://doi.org/10.1002/adfm.202101372
for vascularized bone tissue regeneration. Acta Biomater, 120. Li W, Miao W, Liu Y, et al., 2022, Bioprinted constructs
123:263–274. that mimic the ossification center microenvironment for
https://doi.org/10.1016/j.actbio.2021.01.012 targeted innervation in bone regeneration. Adv Funct Mater,
32(9):2109871.
110. Wang X, Yu Y, Yang C, et al., 2021, Microfluidic 3D printing
responsive scaffolds with biomimetic enrichment channels https://doi.org/10.1002/adfm.202109871
for bone regeneration. Adv Funct Mater, 31(40):2105190.
121. Fitzpatrick V, Martin-Moldes Z, Deck A, et al., 2021,
https://doi.org/10.1002/adfm.202105190 Functionalized 3D-printed silk-hydroxyapatite scaffolds
111. Zhang M, Lin R, Wang X, et al., 2020, 3D printing of for enhanced bone regeneration with innervation and
Haversian bone-mimicking scaffolds for multicellular vascularization. Biomaterials, 276:120995.
delivery in bone regeneration. Sci Adv, 6(12):eaaz6725. https://doi.org/10.1016/j.biomaterials.2021.120995
https://doi.org/10.1126/sciadv.aaz6725
122. Zhang Y, Xu J, Ruan YC, et al., 2016, Implant-derived
112. Wang L, Hu P, Jiang H, et al., 2022, Mild hyperthermia- magnesium induces local neuronal production of CGRP
mediated osteogenesis and angiogenesis play a critical role to improve bone-fracture healing in rats. Nat Med,
in magnetothermal composite-induced bone regeneration. 22(10):1160–1169.
Nano Today, 43:101401.
https://doi.org/10.1038/nm.4162
https://doi.org/10.1016/j.nantod.2022.101401
123. Ma Y-X, Jiao K, Wan Q-Q, et al., 2022, Silicified collagen
113. Yu X, Wang X, Li D, et al., 2022, Mechanically reinforced scaffold induces semaphorin 3A secretion by sensory nerves
injectable bioactive nanocomposite hydrogels for in-situ to improve in-situ bone regeneration. Bioact Mater, 9:
bone regeneration. Chem Eng J, 433:132799. 475–490.
https://doi.org/10.1016/j.cej.2021.132799
https://doi.org/10.1016/j.bioactmat.2021.07.016
114. Zhu D, Lu B, Yang Q, et al., 2021, Lanthanum-doped
mesoporous bioglasses/chitosan composite scaffolds 124. Zhang M, Qin C, Wang Y, et al., 2022, 3D printing of
enhance synchronous osteogenesis and angiogenesis for tree-like scaffolds for innervated bone regeneration. Addit
augmented osseous regeneration. Chem Eng J, 405:127077. Manuf, 54:102721.
https://doi.org/10.1016/j.cej.2020.127077 https://doi.org/10.1016/j.addma.2022.102721
115. Yin J, Pan S, Guo X, et al., 2021, Nb C MXene-functionalized 125. Zhang H, Qin C, Zhang M, et al., 2022, Calcium silicate
2
scaffolds enables osteosarcoma phototherapy and nanowires-containing multicellular bioinks for 3D
angiogenesis/osteogenesis of bone defects. Nano-Micro Lett, bioprinting of neural-bone constructs. Nano Today,
13(1): 30. 46:101584.
https://doi.org/10.1007/s40820-020-00547-6 https://doi.org/10.1016/j.nantod.2022.101584
Volume 9 Issue 3 (2023) 235 https://doi.org/10.18063/ijb.706

