Page 243 - IJB-9-3
P. 243

International Journal of Bioprinting                Biomaterials for vascularized and innervated tissue regeneration



            105. Piard C, Baker H, Kamalitdinov T, et al., 2019, Bioprinted   116. Han X, Sun M, Chen B, et al., 2021, Lotus seedpod-inspired
               osteon-like scaffolds enhance in vivo neovascularization.   internal  vascularized  3D  printed  scaffold  for  bone  tissue
               Biofabrication, 11(2):025013.                      repair. Bioact Mater, 6(6):1639–1652.
               https://doi.org/10.1088/1758-5090/ab078a           https://doi.org/10.1016/j.bioactmat.2020.11.019
            106. Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional   117. Gu J, Zhang Q, Geng M, et al., 2021, Construction of
               bioprinting  of  multicell-laden  scaffolds  containing  bone   nanofibrous scaffolds with interconnected perfusable
               morphogenic protein-4 for promoting M2 macrophage   microchannel networks for engineering of vascularized
               polarization and accelerating bone defect repair in diabetes   bone tissue. Bioact Mater, 6(10):3254–3268.
               mellitus. Bioact Mater, 6(3):757–769.
                                                                  https://doi.org/10.1016/j.bioactmat.2021.02.033
               https://doi.org/10.1016/j.bioactmat.2020.08.030
            107. Wan Z, Zhang P, Liu Y, et al., 2020, Four-dimensional   118. Ha Y, Ma X, Li S, et al., 2022, Bone microenvironment-
               bioprinting: Current developments and applications in bone   mimetic scaffolds with hierarchical microstructure for
               tissue engineering. Acta Biomater, 101:26–42.      enhanced vascularization and bone regeneration. Adv Funct
                                                                  Mater, 32(20):2200011.
               https://doi.org/10.1016/j.actbio.2019.10.038
                                                                  https://doi.org/10.1002/adfm.202200011
            108. Feng C, Zhang W, Deng C, et al., 2017, 3D printing of lotus
               root-like biomimetic materials for cell delivery and tissue   119. Yang C, Zheng Z, Younis MR,  et  al., 2021, 3D printed
               regeneration. Adv Sci, 4(12):1700401.              enzyme-functionalized scaffold facilitates diabetic bone
                                                                  regeneration. Adv Funct Mater, 31(20):2101372.
               https://doi.org/10.1002/advs.201700401
            109. Hann SY, Cui H, Esworthy T, et al., 2021, Dual 3D printing   https://doi.org/10.1002/adfm.202101372
               for vascularized  bone tissue regeneration.  Acta Biomater,   120. Li W, Miao W, Liu Y, et al., 2022, Bioprinted constructs
               123:263–274.                                       that mimic the ossification center microenvironment for
               https://doi.org/10.1016/j.actbio.2021.01.012       targeted innervation in bone regeneration. Adv Funct Mater,
                                                                  32(9):2109871.
            110. Wang X, Yu Y, Yang C, et al., 2021, Microfluidic 3D printing
               responsive scaffolds with biomimetic enrichment channels   https://doi.org/10.1002/adfm.202109871
               for bone regeneration. Adv Funct Mater, 31(40):2105190.
                                                               121. Fitzpatrick V, Martin-Moldes Z, Deck A, et al., 2021,
               https://doi.org/10.1002/adfm.202105190             Functionalized 3D-printed silk-hydroxyapatite scaffolds
            111. Zhang M, Lin R, Wang X, et al., 2020, 3D printing of   for enhanced bone regeneration with innervation and
               Haversian bone-mimicking scaffolds for multicellular   vascularization. Biomaterials, 276:120995.
               delivery in bone regeneration. Sci Adv, 6(12):eaaz6725.  https://doi.org/10.1016/j.biomaterials.2021.120995
               https://doi.org/10.1126/sciadv.aaz6725
                                                               122. Zhang Y, Xu  J, Ruan YC, et al.,  2016, Implant-derived
            112. Wang L, Hu P, Jiang H, et al., 2022, Mild hyperthermia-  magnesium  induces local  neuronal  production of  CGRP
               mediated osteogenesis and angiogenesis play a critical role   to improve bone-fracture healing in rats.  Nat Med,
               in magnetothermal composite-induced bone regeneration.   22(10):1160–1169.
               Nano Today, 43:101401.
                                                                  https://doi.org/10.1038/nm.4162
               https://doi.org/10.1016/j.nantod.2022.101401
                                                               123. Ma Y-X, Jiao K, Wan Q-Q, et al., 2022, Silicified collagen
            113. Yu X, Wang X, Li D, et al., 2022, Mechanically reinforced   scaffold induces semaphorin 3A secretion by sensory nerves
               injectable bioactive nanocomposite hydrogels for in-situ   to improve in-situ bone regeneration.  Bioact Mater, 9:
               bone regeneration. Chem Eng J, 433:132799.         475–490.
               https://doi.org/10.1016/j.cej.2021.132799
                                                                  https://doi.org/10.1016/j.bioactmat.2021.07.016
            114. Zhu D, Lu B, Yang Q, et al., 2021, Lanthanum-doped
               mesoporous  bioglasses/chitosan  composite  scaffolds  124. Zhang M, Qin C, Wang Y, et al., 2022, 3D printing of
               enhance synchronous osteogenesis and angiogenesis for   tree-like scaffolds for innervated bone regeneration. Addit
               augmented osseous regeneration. Chem Eng J, 405:127077.  Manuf, 54:102721.
               https://doi.org/10.1016/j.cej.2020.127077          https://doi.org/10.1016/j.addma.2022.102721
            115. Yin J, Pan S, Guo X, et al., 2021, Nb C MXene-functionalized   125. Zhang H, Qin C, Zhang M, et al., 2022, Calcium silicate
                                        2
               scaffolds  enables  osteosarcoma  phototherapy  and  nanowires-containing multicellular bioinks for 3D
               angiogenesis/osteogenesis of bone defects. Nano-Micro Lett,   bioprinting of neural-bone constructs.  Nano Today,
               13(1): 30.                                         46:101584.
               https://doi.org/10.1007/s40820-020-00547-6         https://doi.org/10.1016/j.nantod.2022.101584


            Volume 9 Issue 3 (2023)                        235                         https://doi.org/10.18063/ijb.706
   238   239   240   241   242   243   244   245   246   247   248