Page 214 - IJB-9-4
P. 214
International Journal of Bioprinting b-Ti21S TPMS FGPs produced by laser powder bed fusion
11. ISO - ISO 5832-14:2019 - Implants for surgery—Metallic orthopedic implants: Mechanisms, current approaches, and
materials—Part 14: Wrought titanium 15-molybdenum future directions. Prog Mater Sci, 106:100588.
5-zirconium 3-aluminium alloy.
https://doi.org/10.1016/j.pmatsci.2019.100588
12. Brunke F, Siemers C, Rösler J, 2020, Second-generation
titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A comparison 23. Bobbert FSL, Lietaert K., Eftekhari AA, et al., 2017,
of the mechanical properties for implant applications. Additively manufactured metallic porous biomaterials based
MATEC Web Conf, 321:05006. on minimal surfaces: A unique combination of topological,
mechanical, and mass transport properties. Acta Biomater,
https://doi.org/10.1051/matecconf/202032105006 53:572–584.
13. Duan R, Li S, Cai B, et al., 2021, A high strength and low https://doi.org/10.1016/j.actbio.2017.02.024
modulus metastable β Ti-12Mo-6Zr-2Fe alloy fabricated
by laser powder bed fusion in-situ alloying. Addit Manuf, 24. Zhang J, Chen X, Sun Y, et al., 2022, Design of a biomimetic
37:101708. graded TPMS scaffold with quantitatively adjustable pore
size. Mater Des, 218:110665.
https://doi.org/10.1016/j.addma.2020.101708
https://doi.org/10.1016/J.MATDES.2022.110665
14. Escobar Claros CA, Contri Campanelli L, Moreira Jorge A,
et al., 2021, Corrosion behaviour of biomedical β-titanium 25. Zheng Y, Han Q, Wang J, et al., 2020, Promotion of
alloys with the surface-modified by chemical etching and osseointegration between implant and bone interface by
electrochemical methods. Corros Sci, 188:109544. titanium alloy porous scaffolds prepared by 3D printing.
ACS Biomater Sci Eng, 6:5181–5190.
https://doi.org/10.1016/J.CORSCI.2021.109544
https://doi.org/10.1021/acsbiomaterials.0c00662
15. Materials Properties Handbook: Titanium Alloys, ASM
International. 26. Al-Ketan O, Rowshan R, Abu Al-Rub RK, 2018, Topology-
mechanical property relationship of 3D printed strut,
https://www.asminternational.org/materials-resources/ skeletal, and sheet based periodic metallic cellular materials.
results/-/journal_content/56/10192/06005G/PUBLICATION Addit Manuf, 19:167–183.
(accessed 13 July 2022).
https://doi.org/10.1016/J.ADDMA.2017.12.006
16. Macias-Sifuentes MA, Xu C, Sanchez-Mata O, et al., 2021,
Microstructure and mechanical properties of β-21S Ti alloy 27. Tang M, Pistorius PC, Beuth JL, 2017, Prediction of lack-
fabricated through laser powder bed fusion. Prog Addit of-fusion porosity for powder bed fusion. Addit Manuf,
Manuf, 6:417–430. 14:39–48.
https://doi.org/10.1007/s40964-021-00181-7 https://doi.org/10.1016/J.ADDMA.2016.12.001
17. Pellizzari M, Jam A, Tschon M, et al., 2020, A 3D-printed 28. Alaña M, Cutolo A, Probst G, et al., 2020, Understanding
ultra-low young’s modulus β-Ti alloy for biomedical elastic anisotropy in diamond based lattice structures
applications. Materials (Basel), 13:1–16. produced by laser powder bed fusion: Effect of manufacturing
https://doi.org/10.3390/ma13122792 deviations. Mater Des, 195:1–12.
18. Jam A, du Plessis A, Lora C, et al., 2022, Manufacturability https://doi.org/10.1016/j.matdes.2020.108971
of lattice structures fabricated by laser powder bed fusion: A 29. Emanuelli L, Jam A, Du Plessis A, et al., Manufacturability
novel biomedical application of the beta Ti-21S alloy. Addit of functionally graded porous β-Ti21S auxetic
Manuf, 50:102556. architected biomaterials produced by laser powder bed
https://doi.org/10.1016/J.ADDMA.2021.102556 fusion: Comparison between 2D and 3D metrological
characterization. Int J Bioprint, 9(2): 0213.
19. Gibson LJ, Ashby MF, Harley BA, Cellular Materials in
Nature and Medicine, 309. 30. Benedetti M, du Plessis A, Ritchie RO, et al., 2021,
Architected cellular materials: A review on their mechanical
20. Ashby MF, 2006, The properties of foams and lattices. Philos properties towards fatigue-tolerant design and fabrication.
Trans R Soc A Math Phys Eng Sci, 364:15–30. Mater Sci Eng R Rep, 144:100606.
https://doi.org/10.1098/RSTA.2005.1678 https://doi.org/10.1016/j.mser.2021.100606
21. Abate KM, Nazir A, Jeng JY, 2021, Design, optimization, and 31. Al-Ketan O, Rowshan R, Abu Al-Rub RK, 2018, Topology-
selective laser melting of vin tiles cellular structure-based mechanical property relationship of 3D printed strut,
hip implant. Int J Adv Manuf Technol, 112:2037–2050.
skeletal, and sheet based periodic metallic cellular materials.
https://doi.org/10.1007/S00170-020-06323-5 Addit Manuf, 19:167–183.
22. Stewart C, Akhavan B, Wise SG, et al., 2019, A review of https://doi.org/10.1016/j.addma.2017.12.006
biomimetic surface functionalization for bone-integrating
Volume 9 Issue 4 (2023) 206 https://doi.org/10.18063/ijb.729

