Page 214 - IJB-9-4
P. 214

International Journal of Bioprinting                    b-Ti21S TPMS FGPs produced by laser powder bed fusion



            11.  ISO - ISO 5832-14:2019 - Implants for surgery—Metallic   orthopedic implants: Mechanisms, current approaches, and
               materials—Part  14: Wrought titanium  15-molybdenum   future directions. Prog Mater Sci, 106:100588.
               5-zirconium 3-aluminium alloy.
                                                                  https://doi.org/10.1016/j.pmatsci.2019.100588
            12.  Brunke F, Siemers C, Rösler J, 2020, Second-generation
               titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A comparison   23.  Bobbert FSL, Lietaert K., Eftekhari AA,  et al., 2017,
               of the mechanical properties for implant applications.   Additively manufactured metallic porous biomaterials based
               MATEC Web Conf, 321:05006.                         on minimal surfaces: A unique combination of topological,
                                                                  mechanical, and mass transport properties. Acta Biomater,
               https://doi.org/10.1051/matecconf/202032105006     53:572–584.
            13.  Duan R, Li S, Cai B,  et al., 2021, A high strength and low   https://doi.org/10.1016/j.actbio.2017.02.024
               modulus  metastable  β  Ti-12Mo-6Zr-2Fe  alloy  fabricated
               by laser powder bed fusion in-situ alloying.  Addit Manuf,   24.  Zhang J, Chen X, Sun Y, et al., 2022, Design of a biomimetic
               37:101708.                                         graded TPMS scaffold with quantitatively adjustable pore
                                                                  size. Mater Des, 218:110665.
               https://doi.org/10.1016/j.addma.2020.101708
                                                                  https://doi.org/10.1016/J.MATDES.2022.110665
            14.  Escobar Claros CA, Contri Campanelli L, Moreira Jorge A,
               et al., 2021, Corrosion behaviour of biomedical β-titanium   25.  Zheng Y, Han Q, Wang J,  et al., 2020, Promotion of
               alloys  with  the  surface-modified  by  chemical  etching  and   osseointegration between implant and bone interface by
               electrochemical methods. Corros Sci, 188:109544.   titanium alloy porous scaffolds prepared by 3D printing.
                                                                  ACS Biomater Sci Eng, 6:5181–5190.
               https://doi.org/10.1016/J.CORSCI.2021.109544
                                                                  https://doi.org/10.1021/acsbiomaterials.0c00662
            15.  Materials  Properties  Handbook:  Titanium  Alloys, ASM
               International.                                  26.  Al-Ketan O, Rowshan R, Abu Al-Rub RK, 2018, Topology-
                                                                  mechanical property relationship of 3D printed strut,
               https://www.asminternational.org/materials-resources/  skeletal, and sheet based periodic metallic cellular materials.
               results/-/journal_content/56/10192/06005G/PUBLICATION    Addit Manuf, 19:167–183.
               (accessed 13 July 2022).
                                                                  https://doi.org/10.1016/J.ADDMA.2017.12.006
            16.  Macias-Sifuentes MA, Xu C, Sanchez-Mata O, et al., 2021,
               Microstructure and mechanical properties of β-21S Ti alloy   27.  Tang M, Pistorius PC, Beuth JL, 2017, Prediction of lack-
               fabricated through laser powder bed fusion.  Prog Addit   of-fusion porosity for powder bed fusion.  Addit Manuf,
               Manuf, 6:417–430.                                  14:39–48.
               https://doi.org/10.1007/s40964-021-00181-7         https://doi.org/10.1016/J.ADDMA.2016.12.001
            17.  Pellizzari M, Jam A, Tschon M, et al., 2020, A 3D-printed   28.  Alaña M, Cutolo A, Probst G, et al., 2020, Understanding
               ultra-low young’s  modulus β-Ti  alloy for  biomedical   elastic anisotropy in diamond based lattice structures
               applications. Materials (Basel), 13:1–16.          produced by laser powder bed fusion: Effect of manufacturing
               https://doi.org/10.3390/ma13122792                 deviations. Mater Des, 195:1–12.
            18.  Jam A, du Plessis A, Lora C, et al., 2022, Manufacturability   https://doi.org/10.1016/j.matdes.2020.108971
               of lattice structures fabricated by laser powder bed fusion: A   29.  Emanuelli L, Jam A, Du Plessis A, et al., Manufacturability
               novel biomedical application of the beta Ti-21S alloy. Addit   of  functionally  graded  porous  β-Ti21S  auxetic
               Manuf, 50:102556.                                  architected biomaterials  produced by  laser  powder  bed
               https://doi.org/10.1016/J.ADDMA.2021.102556        fusion: Comparison between 2D and 3D metrological
                                                                  characterization. Int J Bioprint, 9(2): 0213.
            19.  Gibson LJ, Ashby MF, Harley BA,  Cellular Materials in
               Nature and Medicine, 309.                       30.  Benedetti M, du Plessis A, Ritchie RO,  et al., 2021,
                                                                  Architected cellular materials: A review on their mechanical
            20.  Ashby MF, 2006, The properties of foams and lattices. Philos   properties towards fatigue-tolerant design and fabrication.
               Trans R Soc A Math Phys Eng Sci, 364:15–30.        Mater Sci Eng R Rep, 144:100606.
               https://doi.org/10.1098/RSTA.2005.1678             https://doi.org/10.1016/j.mser.2021.100606
            21.  Abate KM, Nazir A, Jeng JY, 2021, Design, optimization, and   31.  Al-Ketan O, Rowshan R, Abu Al-Rub RK, 2018, Topology-
               selective laser melting of vin tiles cellular structure-based   mechanical property relationship of 3D printed strut,
               hip implant. Int J Adv Manuf Technol, 112:2037–2050.
                                                                  skeletal, and sheet based periodic metallic cellular materials.
               https://doi.org/10.1007/S00170-020-06323-5         Addit Manuf, 19:167–183.
            22.  Stewart C, Akhavan B, Wise SG, et al., 2019, A review of   https://doi.org/10.1016/j.addma.2017.12.006
               biomimetic surface functionalization for bone-integrating




            Volume 9 Issue 4 (2023)                        206                          https://doi.org/10.18063/ijb.729
   209   210   211   212   213   214   215   216   217   218   219