Page 318 - IJB-9-4
P. 318

International Journal of Bioprinting                          Biomechanical properties of 3D printable material



            4.   Lal H., Patralekh MK, 2018, 3D printing and its applications   dynamics modeling of hemodynamic parameters in the
               in  orthopaedic  trauma:  A  technological  marvel.  J  Clin   human diseased aorta: A systematic review. Ann Vasc Surg,
               Orthop Trauma, 9(3):260–268.                       63:336–381.
               https://doi.org/10.1016/j.jcot.2018.07.022         https://doi.org/10.1016/j.avsg.2019.04.032
            5.   Khorsandi D, Fahimipour A, Abasian P, et al., 2021, 3D and   16.  Mourato A, Valente R, Xavier J, et al., 2022, Computational
               4D printing in dentistry and maxillofacial surgery: Printing   modelling and simulation of fluid structure interaction in
               techniques, materials, and applications.  Acta Biomater,   aortic aneurysms: A systematic review and discussion of the
               122:26–49.                                         clinical potential. Appl Sci, 12(16):8049.

               https://doi.org/10.1016/j.actbio.2020.12.044       https://doi.org/10.3390/app12168049
            6.   Wang Z, Wang L, Li T, et al., 2021, 3D bioprinting in cardiac   17.  Vignali E, Gasparotti E, Celi S, et al., 2021, Fully-coupled
               tissue engineering. Theranostics, 11(16):7948–7969.  FSI computational analyses in the ascending thoracic aorta
                                                                  using  patient-specific  conditions  and  anisotropic  material
               https://doi.org/10.7150/thno.61621
                                                                  properties. Front Physiol, 12:732561.
            7.   Brantner P, Madaffari A, Fahrni G, et al., 2020, 3D-printed   https://doi.org/10.3389/fphys.2021.732561
               visualization  of a complex  coronary-venous  fistula  with
               additional  feeders  from  the  descending  aorta.  JACC Case   18.  Simão M, Ferreira J, Tomás AC, et al., 2017, Aorta ascending
               Rep, 2(11):1736–1738.                              aneurysm analysis using CFD models towards possible
                                                                  anomalies. Fluids, 2(2):31.
               https://doi.org/10.1016/j.jaccas.2020.06.028
                                                                  https://doi.org/10.3390/fluids2020031
            8.   Santoro G, Pizzuto A, Rizza A, et al., 2021, Transcatheter
               treatment of ‘complex’ aortic coarctation guided by printed   19.  Wee I, Ong CW, Syn N, et al., 2018, Computational fluid
               3D model. JACC Case Rep, 3(6):900–904.             dynamics and  aortic dissections:  Panacea or panic?  Vasc
                                                                  Endovasc Rev, 1(1):27–29.
               https://doi.org/10.1016/j.jaccas.2021.04.036
                                                                  https://doi.org/10.15420/ver.2018.8.2
            9.   Kim WK, Kim T, Lee S,  et al., 2019, 3D-printing-based
               open repair of extensive thoracoabdominal aorta in severe   20.  Wang Y, Joannic D, Juillion P,  et al., 2016, Comparison
               scoliosis. Semin Thorac Cardiovasc Surg, 31(1):61–63.  of flow measurement by  4D flow magnetic resonance
                                                                  imaging and by particles image velocimetry on phantom of
               https://doi.org/10.1053/j.semtcvs.2018.09.017      abdominal aortic aneurysm. SM Vasc Med, 1(2):1008.
            10.  Ooms JF, Wang DD, Rajani R,  et al., 2021, Computed   https://hal.archives-ouvertes.fr/hal-01463873
               tomography–derived 3D modeling to guide sizing and
               planning of transcatheter mitral valve interventions. JACC   21.  Kurenov  SN, Ionita  C, Sammons  D,  et al., 2015,  Three-
               Cardiovasc Imaging, 14(8): 1644–1658.              dimensional printing to facilitate anatomic study, device
                                                                  development, simulation, and planning in thoracic surgery.
               https://doi.org/10.1016/j.jcmg.2020.12.034         J Thorac Cardiovasc Surg, 149(4):973–979.
            11.  Sherifova S, Holzapfel GA, 2019, Biomechanics of aortic wall   https://doi.org/10.1016/j.jtcvs.2014.12.059
               failure with a focus on dissection and aneurysm: A review.
               Acta Biomater, 99:1–17.                         22.  Vukicevic M, Puperi DS,  Grande-Allen KJ,  et al., 2016,
                                                                  Erratum  to:  3D  printed  modeling  of  the  mitral  valve  for
               https://doi.org/10.1016/j.actbio.2019.08.017       catheter-based structural interventions.  Ann Biomed Eng,
            12.  Lin S, Morgant MC, Marín-Castrillón DM,  et al., 2022,   44(11):3432–3432.
               Aortic local biomechanical properties in ascending aortic   https://doi.org/10.1007/s10439-016-1690-7
               aneurysms. Acta Biomater, 149:40–50 .
                                                               23.  Wang K, Wu C, Qian Z,  et al., 2016. Dual-material 3D
               https://doi.org/10.1016/j.actbio.2022.06.019       printed metamaterials with tunable mechanical properties
            13.  Community challenge towards consensus on characterization   for patient-specific tissue-mimicking phantoms.  Addit
               of biological tissue. C4Bio.                       Manuf, 12:31–37.
                                                                  https://doi.org/10.1016/j.addma.2016.06.006
               https://c4bio.eu/ (accessed Dec. 10, 2022).
            14.  Caballero AD, Laín S, 2013, A review on computational fluid   24.  Biglino  G,  Verschueren  P, Zegels R,  et al.,  2013,  Rapid
               dynamics modelling in human thoracic aorta.  Cardiovasc   prototyping compliant arterial phantoms for in-vitro studies
               Eng Technol, 4(2):103–130.                         and device testing. J Cardiovasc Magn Reson, 15(1):2.
                                                                  https://doi.org/10.1186/1532-429X-15-2
               https://doi.org/10.1007/s13239-013-0146-6
                                                               25.  Duprey A, Khanafer K, Schlicht M,  et al., 2010, In vitro
            15.  Ong CW,  Wee I, Syn N,  et al., 2020, Computational fluid
                                                                  characterisation of physiological and maximum elastic

            Volume 9 Issue 4 (2023)                        310                         https://doi.org/10.18063/ijb.736
   313   314   315   316   317   318   319   320   321   322   323