Page 318 - IJB-9-4
P. 318
International Journal of Bioprinting Biomechanical properties of 3D printable material
4. Lal H., Patralekh MK, 2018, 3D printing and its applications dynamics modeling of hemodynamic parameters in the
in orthopaedic trauma: A technological marvel. J Clin human diseased aorta: A systematic review. Ann Vasc Surg,
Orthop Trauma, 9(3):260–268. 63:336–381.
https://doi.org/10.1016/j.jcot.2018.07.022 https://doi.org/10.1016/j.avsg.2019.04.032
5. Khorsandi D, Fahimipour A, Abasian P, et al., 2021, 3D and 16. Mourato A, Valente R, Xavier J, et al., 2022, Computational
4D printing in dentistry and maxillofacial surgery: Printing modelling and simulation of fluid structure interaction in
techniques, materials, and applications. Acta Biomater, aortic aneurysms: A systematic review and discussion of the
122:26–49. clinical potential. Appl Sci, 12(16):8049.
https://doi.org/10.1016/j.actbio.2020.12.044 https://doi.org/10.3390/app12168049
6. Wang Z, Wang L, Li T, et al., 2021, 3D bioprinting in cardiac 17. Vignali E, Gasparotti E, Celi S, et al., 2021, Fully-coupled
tissue engineering. Theranostics, 11(16):7948–7969. FSI computational analyses in the ascending thoracic aorta
using patient-specific conditions and anisotropic material
https://doi.org/10.7150/thno.61621
properties. Front Physiol, 12:732561.
7. Brantner P, Madaffari A, Fahrni G, et al., 2020, 3D-printed https://doi.org/10.3389/fphys.2021.732561
visualization of a complex coronary-venous fistula with
additional feeders from the descending aorta. JACC Case 18. Simão M, Ferreira J, Tomás AC, et al., 2017, Aorta ascending
Rep, 2(11):1736–1738. aneurysm analysis using CFD models towards possible
anomalies. Fluids, 2(2):31.
https://doi.org/10.1016/j.jaccas.2020.06.028
https://doi.org/10.3390/fluids2020031
8. Santoro G, Pizzuto A, Rizza A, et al., 2021, Transcatheter
treatment of ‘complex’ aortic coarctation guided by printed 19. Wee I, Ong CW, Syn N, et al., 2018, Computational fluid
3D model. JACC Case Rep, 3(6):900–904. dynamics and aortic dissections: Panacea or panic? Vasc
Endovasc Rev, 1(1):27–29.
https://doi.org/10.1016/j.jaccas.2021.04.036
https://doi.org/10.15420/ver.2018.8.2
9. Kim WK, Kim T, Lee S, et al., 2019, 3D-printing-based
open repair of extensive thoracoabdominal aorta in severe 20. Wang Y, Joannic D, Juillion P, et al., 2016, Comparison
scoliosis. Semin Thorac Cardiovasc Surg, 31(1):61–63. of flow measurement by 4D flow magnetic resonance
imaging and by particles image velocimetry on phantom of
https://doi.org/10.1053/j.semtcvs.2018.09.017 abdominal aortic aneurysm. SM Vasc Med, 1(2):1008.
10. Ooms JF, Wang DD, Rajani R, et al., 2021, Computed https://hal.archives-ouvertes.fr/hal-01463873
tomography–derived 3D modeling to guide sizing and
planning of transcatheter mitral valve interventions. JACC 21. Kurenov SN, Ionita C, Sammons D, et al., 2015, Three-
Cardiovasc Imaging, 14(8): 1644–1658. dimensional printing to facilitate anatomic study, device
development, simulation, and planning in thoracic surgery.
https://doi.org/10.1016/j.jcmg.2020.12.034 J Thorac Cardiovasc Surg, 149(4):973–979.
11. Sherifova S, Holzapfel GA, 2019, Biomechanics of aortic wall https://doi.org/10.1016/j.jtcvs.2014.12.059
failure with a focus on dissection and aneurysm: A review.
Acta Biomater, 99:1–17. 22. Vukicevic M, Puperi DS, Grande-Allen KJ, et al., 2016,
Erratum to: 3D printed modeling of the mitral valve for
https://doi.org/10.1016/j.actbio.2019.08.017 catheter-based structural interventions. Ann Biomed Eng,
12. Lin S, Morgant MC, Marín-Castrillón DM, et al., 2022, 44(11):3432–3432.
Aortic local biomechanical properties in ascending aortic https://doi.org/10.1007/s10439-016-1690-7
aneurysms. Acta Biomater, 149:40–50 .
23. Wang K, Wu C, Qian Z, et al., 2016. Dual-material 3D
https://doi.org/10.1016/j.actbio.2022.06.019 printed metamaterials with tunable mechanical properties
13. Community challenge towards consensus on characterization for patient-specific tissue-mimicking phantoms. Addit
of biological tissue. C4Bio. Manuf, 12:31–37.
https://doi.org/10.1016/j.addma.2016.06.006
https://c4bio.eu/ (accessed Dec. 10, 2022).
14. Caballero AD, Laín S, 2013, A review on computational fluid 24. Biglino G, Verschueren P, Zegels R, et al., 2013, Rapid
dynamics modelling in human thoracic aorta. Cardiovasc prototyping compliant arterial phantoms for in-vitro studies
Eng Technol, 4(2):103–130. and device testing. J Cardiovasc Magn Reson, 15(1):2.
https://doi.org/10.1186/1532-429X-15-2
https://doi.org/10.1007/s13239-013-0146-6
25. Duprey A, Khanafer K, Schlicht M, et al., 2010, In vitro
15. Ong CW, Wee I, Syn N, et al., 2020, Computational fluid
characterisation of physiological and maximum elastic
Volume 9 Issue 4 (2023) 310 https://doi.org/10.18063/ijb.736

