Page 319 - IJB-9-4
P. 319

International Journal of Bioprinting                         Biomechanical properties of 3D printable materialv



               modulus of ascending thoracic aortic aneurysms using uniaxial   32.  Pham T, Martin C, Elefteriades J, et al., 2013, Biomechanical
               tensile testing. Eur J Vasc Endovasc Surg, 39(6):700–707.  characterization of ascending aortic aneurysm with
                                                                  concomitant bicuspid aortic valve and bovine aortic arch.
               https://doi.org/10.1016/j.ejvs.2010.02.015
                                                                  Acta Biomater, 9(8):7927–7936.
            26.  Chung M, Radacsi N, Robert C,  et al., 2018, On the
               optimization of low-cost FDM  3D printers for  accurate   https://doi.org/10.1016/j.actbio.2013.04.021
               replication of patient-specific abdominal aortic aneurysm   33.  Raghavan ML, Webster MW, Vorp DA, 1996, Ex vivo
               geometry. 3D Print Med, 4(1):2.                    biomechanical behavior of abdominal aortic aneurysm:
               https://doi.org/10.1186/s41205-017-0023-2          Assessment using a new mathematical model. Ann Biomed
                                                                  Eng, 24(5):573–582.
            27.  Iliopoulos DC, Deveja RP, Kritharis EP, et al., 2009, Regional
               and directional variations in the mechanical properties   https://doi.org/10.1007/BF02684226
               of ascending thoracic  aortic aneurysms.  Med Eng Phys,   34.  Vorp DA, Schiro BJ, Ehrlich MP,  et  al., 2003, Effect of
               31(1):1–9.                                         aneurysm on the tensile strength and biomechanical
               https://doi.org/10.1016/j.medengphy.2008.03.002    behavior of the ascending thoracic aorta. Ann Thorac Surg,
                                                                  75(4):1210–1214.
            28.  Ferrara A, Morganti S, Totaro P, et al., 2016, Human dilated
               ascending aorta: Mechanical characterization via uniaxial   https://doi.org/10.1016/S0003-4975(02)04711-2
               tensile tests. J Mech Behav Biomed Mater, 53:257–271.
                                                               35.  Di Martino ES, Bohra A, Vande Geest JP,  et al., 2006,
               https://doi.org/10.1016/j.jmbbm.2015.08.021        Biomechanical  properties  of  ruptured  versus  electively
                                                                  repaired abdominal aortic aneurysm wall tissue. J Vasc Surg,
            29.  Ferrara A, Totaro P, Morganti S,  et al., 2018, Effects of
               clinico-pathological risk factors on in-vitro mechanical   43(3):570–576.
               properties of human dilated ascending aorta. J Mech Behav   https://doi.org/10.1016/j.jvs.2005.10.072
               Biomed Mater, 77:1–11.
                                                               36.  Sommer  G, Sherifova S,  Oberwalder  PJ,  et al., 2016,
               https://doi.org/10.1016/j.jmbbm.2017.08.032        Mechanical strength of aneurysmatic and dissected human
            30.  Vande Geest JP, Sacks MS, Vorp DA, 2006, The effects of   thoracic aortas at different shear loading modes. J Biomech,
               aneurysm on the biaxial mechanical behavior of human   49(12):2374–2382.
               abdominal aorta. J Biomech, 39(7):1324–1334.       https://doi.org/10.1016/j.jbiomech.2016.02.042
               https://doi.org/10.1016/j.jbiomech.2005.03.003  37.  García-Herrera CM, Atienza JM, Rojo FJ,  et al., 2012,
            31.  Azadani AN, Chitsaz S, Mannion A,  et al., 2013,   Mechanical behaviour and rupture of normal and
               Biomechanical properties of human ascending thoracic   pathological human ascending aortic wall.  Med Biol Eng
               aortic aneurysms. Ann Thorac Surg, 96(1):50–58.    Comput, 50(6):559–566.
               https://doi.org/10.1016/j.athoracsur.2013.03.094   https://doi.org/10.1007/s11517-012-0876-x































            Volume 9 Issue 4 (2023)                        311                         https://doi.org/10.18063/ijb.736
   314   315   316   317   318   319   320   321   322   323   324