Page 240 - IJB-9-5
P. 240

International Journal of Bioprinting                                         Hydrogels for 3D bioprinting



            7.   Sridhar R, Lakshminarayanan R, Madhaiyan K,  et  al.,   18.  Blaeser A, Duarte Campos DF, Puster U, et al., 2016,
               2015, Electrosprayed nanoparticles and electrospun   Controlling shear stress in 3D bioprinting is a key factor
               nanofibers based on natural materials: Applications in tissue   to balance printing resolution and stem cell integrity. Adv
               regeneration, drug delivery and pharmaceuticals. Chem Soc   Healthc Mater, 5(3): 326–333.
               Rev, 44(3): 790–814.
                                                                  https://doi.org/10.1002/adhm.201500677
               https://doi.org/10.1039/c4cs00226a
                                                               19.  Gungor-Ozkerim PS, Inci I, Zhang Y , et al., 2018, Bioinks
            8.   Chen W, Xu Y, Li Y, et al., 2020, 3D printing electrospinning   for 3D bioprinting: An overview.  Biomater Sci, 6(5):
               fiber-reinforced decellularized extracellular matrix for   915–946.
               cartilage regeneration. Chem Eng J, 382: 122986.
                                                                  https://doi.org/10.1039/c7bm00765e
               https://doi.org/10.1016/j.cej.2019.122986
                                                               20.  Griffanti G, Rezabeigi E, Li J, et al., 2019, Rapid biofabrication
            9.   Lai Y, Li Y, Cao H, et al., 2019, Osteogenic magnesium   of printable dense collagen bioinks of tunable properties.
               incorporated into PLGA/TCP porous scaffold by 3D   Adv Funct Mater, 30(4): 1903874.
               printing for repairing challenging bone defect. Biomaterials,
               197: 207–219.                                      https://doi.org/10.1002/adfm.201903874
               https://doi.org/10.1016/j.biomaterials.2019.01.013  21.  Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development
                                                                  of a clay based bioink for 3D cell printing for skeletal
            10.  Golzar H, Mohammadrezaei D, Yadegari A, et al., 2020,   application. Biofabrication, 9(3): 034103.
               Incorporation of functionalized reduced graphene oxide/
               magnesium nanohybrid to enhance the osteoinductivity   https://doi.org/10.1088/1758-5090/aa7e96
               capability of 3D printed calcium phosphate-based scaffolds.   22.  Rastin H, Ormsby RT, Atkins GJ, et al., 2020, 3D bioprinting
               Compos Part B Eng, 185: 107749.                    of  methylcellulose/gelatin-methacryloyl  (MC/GelMA)
               https://doi.org/10.1016/j.compositesb.2020.107749  bioink with high shape integrity. ACS Appl Bio Mater, 3(3):
                                                                  1815–1826.
            11.  Zhang J, Wu G, Qiu J, 2021, Interactions between cells and
               biomaterials in tissue engineering: A review. Sheng Wu Gong   https://doi.org/10.1021/acsabm.0c00169
               Cheng Xue Bao, 37(8): 2668–2677.                23.  Williams D, Thayer P, Martinez H, et al., 2018, A perspective
            12.  Hassan M, Dave K, Chandrawati R, et al., 2019, 3D printing   on the physical, mechanical and biological specifications
               of biopolymer nanocomposites for tissue engineering:   of bioinks and the development of functional tissues in 3D
               Nanomaterials, processing and structure-function relation.   bioprinting. Bioprinting, 9: 19–36.
               Eur Poly J, 121: 109340.                           https://doi.org/10.1016/j.bprint.2018.02.003
               https://doi.org/10.1016/j.eurpolymj.2019.109340  24.  Garreta E, Oria R, Tarantino C, et al., 2017, Tissue
            13.  Aljohani W, Ullah MW, Zhang X, et al., 2018, Bioprinting   engineering by decellularization and 3D bioprinting. Mater
               and its applications in tissue engineering and regenerative   Today, 20(4): 166–178.
               medicine. Int J Biol Macromol, 107(Pt A): 261–275.  https://doi.org/10.1016/j.mattod.2016.12.005
               https://doi.org/10.1016/j.ijbiomac.2017.08.171  25.  Deo KA, Singh KA, Peak CW, et al., 2020, Bioprinting
            14.  Groll J, Burdick JA, Cho D W, et al., 2018, A definition   101: Design, fabrication, and evaluation of cell-laden 3D
               of bioinks and their distinction from biomaterial inks.   bioprinted scaffolds. Tissue Eng Part A, 26(5–6): 318–338.
               Biofabrication, 11(1): 013001.                     https://doi.org/10.1089/ten.TEA.2019.0298
               https://doi.org/10.1088/1758-5090/aaec52        26.  Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary
            15.  Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The bioink: A   article: Engineering hydrogels for biofabrication. Adv Mater,
               comprehensive review on bioprintable materials. Biotechnol   25(36): 5011–5028.
               Adv, 35(2): 217–239.                               https://doi.org/10.1002/adma.201302042
               https://doi.org/10.1016/j.biotechadv.2016.12.006
                                                               27.  Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
            16.  Kabirian F, Mozafari M, 2020, Decellularized ECM-derived   3D bioprinting technology for tissue/organ regenerative
               bioinks: Prospects for the future. Methods, 171: 108–118.  engineering. Biomaterials, 226: 119536.
               https://doi.org/10.1016/j.ymeth.2019.04.019        https://doi.org/10.1016/j.biomaterials.2019.119536
            17.  Yue K, Trujillo-De Santiago G, Alvarez MM, et al., 2015,   28.  Jessop ZM, Al-Sabah A, Gardiner MD, et al., 2017,
               Synthesis, properties, and biomedical applications of   3D  bioprinting  for  reconstructive  surgery:  Principles,
               gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73:    applications  and  challenges.  J Plast Reconstr Aesthet Surg,
               254–271.                                           70(9): 1155–1170.
               https://doi.org/10.1016/j.biomaterials.2015.08.045  https://doi.org/10.1016/j.bjps.2017.06.001


            Volume 9 Issue 5 (2023)                        232                         https://doi.org/10.18063/ijb.759
   235   236   237   238   239   240   241   242   243   244   245