Page 241 - IJB-9-5
P. 241

International Journal of Bioprinting                                         Hydrogels for 3D bioprinting



            29.  Jentsch S, Nasehi R, Kuckelkorn C, et al., 2021, Multiscale   41.  Ouyang L, Armstrong JPK, Lin Y, et al., 2020, Expanding and
               3D bioprinting by nozzle-free acoustic droplet ejection.   optimizing 3D bioprinting capabilities using complementary
               Small Methods, 5(6): e2000971.                     network bioinks. Sci Adv, 6(38).
            30.  Adine C, Ng KK, Rungarunlert S, et al., 2018, Engineering   42.  Kesti M, Muller M, Becher J, et al., 2015, A versatile bioink
               innervated secretory epithelial organoids by magnetic three-  for  three-dimensional  printing  of  cellular scaffolds  based
               dimensional bioprinting for stimulating epithelial growth in   on thermally and photo-triggered tandem gelation.  Acta
               salivary glands. Biomaterials, 180: 52–66.         Biomater, 11: 162–172.
            31.  Jessop ZM, Al-Sabah A, Gao N, et al., 2019, Printability of   https://doi.org/10.1016/j.actbio.2014.09.033
               pulp derived crystal, fibril and blend nanocellulose-alginate
               bioinks for extrusion 3D bioprinting.  Biofabrication, 11(4):   43.  Kim W, Kim G, 2019, Collagen/bioceramic-based composite
               045006.                                            bioink to fabricate a porous 3D hASCs-laden structure for
                                                                  bone tissue regeneration. Biofabrication, 12(1): 015007.
               https://doi.org/10.1088/1758-5090/ab0631
                                                                  https://doi.org/10.1088/1758-5090/ab436d
            32.  Pan  W,  Wallin  TJ,  Odent  J, et al.,  2019,  Optical
               stereolithography of antifouling zwitterionic hydrogels.    44.  Alexander FA, Jr., Johnson L, Williams K, et al., 2019, A
               J Mater Chem B, 7(17): 2855–2864.                  parameter study for 3D-printing organized nanofibrous
                                                                  collagen scaffolds using direct-write electrospinning.
               https://doi.org/10.1039/c9tb00278b                 Materials (Basel), 12(24): 4131.
            33.  You S, Li J, Zhu W, et al., 2018, Nanoscale 3D printing of   https://doi.org/10.3390/ma12244131
               hydrogels for cellular tissue engineering. J Mater Chem B,
               6(15): 2187–2197.                               45.  Axpe  E, Oyen M, 2016,  Applications  of  alginate-based
                                                                  bioinks in 3D bioprinting. Int J Mol Sci, 17(12): 1976.
               https://doi.org/10.1039/C8TB00301G
                                                                  https://doi.org/10.3390/ijms17121976
            34.  Hong H, Seo YB, Kim DY, et al., 2020, Digital light
               processing 3D printed silk fibroin hydrogel for cartilage   46.  Kyle S, Jessop ZM, Al-Sabah A,  et  al., 2017, ‘Printability’
               tissue engineering. Biomaterials, 232: 119679.     of candidate biomaterials for extrusion based 3D printing:
                                                                  State-of-the-art. Adv Healthc Mater, 6(16).
               https://doi.org/10.1016/j.biomaterials.2019.119679
                                                                  https://doi.org/10.1002/adhm.201700264
            35.  Ying GL, Jiang N, Maharjan S, et al., 2018, Aqueous two-
               phase  emulsion bioink-enabled  3D  bioprinting  of  porous   47.  Cattelan G, Guerrero Gerbolés A, Foresti R, et al., 2020,
               hydrogels. Adv Mater, 30(50): e1805460.            Alginate formulations:  Current  developments in  the  race
                                                                  for hydrogel-based cardiac regeneration.  Front  Bioeng
               https://doi.org/10.1002/adma.201805460             Biotechnol, 8: 00414.
            36.  Heo DN, Castro NJ, Lee SJ, et al., 2017, Enhanced bone   https://doi.org/10.3389/fbioe.2020.00414
               tissue regeneration using a 3D printed microstructure
               incorporated with a hybrid nano hydrogel. Nanoscale, 9(16):   48.  Freeman FE, Kelly DJ, 2017, Tuning alginate bioink stiffness
               5055–5062.                                         and  composition for controlled  growth  factor  delivery
                                                                  and to spatially direct MSC fate within bioprinted tissues.
               https://doi.org/10.1039/c6nr09652b                 Sci Rep, 7(1): 17042.
            37.  Miri AK, Nieto D, Iglesias L, et al., 2018, Microfluidics-  https://doi.org/10.1038/s41598-017-17286-1
               enabled  multimaterial  maskless  stereolithographic
               bioprinting. Adv Mater, 30(27): e1800242.       49.  Trachsel L, Johnbosco C, Lang T, et al., 2019, Double-
                                                                  network hydrogels including enzymatically crosslinked
            38.  Kelly BE, Bhattacharya I, Heidari H, et al., 2019, Volumetric   poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-
               additive  manufacturing via tomographic reconstruction.   engineering  constructs.  Biomacromolecules,  20(12):
               Science, 363(6431): 1045–1079.                     4502–4511.
            39.  Morris VB, Nimbalkar S, Younesi M, et al., 2017, Mechanical   https://doi.org/10.1021/acs.biomac.9b01266
               properties, cytocompatibility and manufacturability of
               chitosan:PEGDA hybrid-gel scaffolds by stereolithography.   50.  Liu C, Qin W, Wang Y, et al., 2021, 3D printed gelatin/
               Ann Biomed Eng, 45(1): 286–296.                    sodium alginate hydrogel scaffolds doped with nano-
                                                                  attapulgite for bone tissue repair.  Int J Nanomedicine, 16:
               https://doi.org/10.1007/s10439-016-1643-1          8417–8432.
            40.  Shen  Y,  Tang  H,  Huang  X, et al.,  2020,  DLP  printing   51.  Chen Q, Tian X, Fan J,  et  al., 2020, An interpenetrating
               photocurable chitosan to build bio-constructs for tissue   alginate/gelatin network for three-dimensional (3D) cell
               engineering. Carbohydr Polym, 235: 115970.         cultures and organ bioprinting. Molecules, 25(3): 756.
               https://doi.org/10.1016/j.carbpol.2020.115970      https://doi.org/10.3390/molecules25030756


            Volume 9 Issue 5 (2023)                        233                         https://doi.org/10.18063/ijb.759
   236   237   238   239   240   241   242   243   244   245   246