Page 246 - IJB-9-5
P. 246

International Journal of Bioprinting                                         Hydrogels for 3D bioprinting



            145. Homan KA, Kolesky DB, Skylar-Scott MA, et al., 2016,   157. Adams F, Qiu T, Mark A, et al., 2017, Soft 3D-printed
               Bioprinting of 3D convoluted renal proximal tubules on   phantom of the human kidney with collecting system. Ann
               perfusable chips. Sci Rep, 6(1).                   Biomed Eng, 45(4): 963–972.
               https://doi.org/10.1038/srep34845                  https://doi.org/10.1007/s10439-016-1757-5
            146.  Zhang K, Fu Q, Yoo J, et al., 2017, 3D bioprinting of urethra with   158. Albanna M, Binder KW, Murphy SA-O, et al., 2019, In
               PCL/PLCL blend and dual autologous cells in fibrin hydrogel:   situ bioprinting of autologous skin cells accelerates wound
               An in vitro evaluation of biomimetic mechanical property and   healing of extensive excisional full-thickness wounds.  Sci
               cell growth environment. Acta Biomater, 50: 154–164.  Rep, 9(1): 1856.
               https://doi.org/10.1016/j.actbio.2016.12.008    159. Noor N, Shapira A, Edri R, et al., 2019, 3D printing of
            147. Ke D, Yi H, Est-Witte S,  et al., 2019, Bioprinted trachea   personalized thick and perfusable cardiac patches and
               constructs with patient-matched design, mechanical and   hearts. Adv Sci (Weinh), 6(11): 1900344.
               biological properties. Biofabrication, 12(1): 015022.  160. Adams F, Qiu T, Mark A, et al., 2017, Soft 3D-printed
               https://doi.org/10.1088/1758-5090/ab5354           phantom of the human kidney with collecting system. Ann
                                                                  Biomed Eng, 45(4): 963–972.
            148. Ha D-H, Chae S, Lee JY, et al., 2021, Therapeutic effect
               of  decellularized  extracellular  matrix-based  hydrogel  for   161. He Y, Yang F, Zhao H, et al., 2016, Research on the printability
               radiation esophagitis by 3D printed esophageal stent.   of hydrogels in 3D bioprinting. Sci Rep, 6(1): 29977.
               Biomaterials, 266: 120477.                         https://doi.org/10.1038/srep29977
               https://doi.org/10.1016/j.biomaterials.2020.120477  162. Datta P, Ayan B, Ozbolat IT, 2017, Bioprinting for vascular
            149. Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting   and vascularized tissue biofabrication.  Acta Biomater, 51:
               of prevascularized tissue constructs with complex   1–20.
               microarchitecture. Biomaterials, 124: 106–115.     https://doi.org/10.1016/j.actbio.2017.01.035
               https://doi.org/10.1016/j.biomaterials.2017.01.042  163. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of bioink
                                                                  properties on printability and cell viability for 3D bioplotting
            150. Góra A, Pliszka D, Mukherjee S, et al., 2016, Tubular tissues
               and organs of human body—challenges in regenerative   of embryonic stem cells. Biofabrication, 8(3): 035020.
               medicine. J Nanosci Nanotechnol, 16(1): 19–39.     https://doi.org/10.1088/1758-5090/8/3/035020
               https://doi.org/10.1166/jnn.2016.11604          164. Lee JM, Yeong WY, 2016, Design and printing strategies
            151. Virk JS, Zhang H, Nouraei R, et al., 2017, Prosthetic   in 3D bioprinting of cell-hydrogels: A review. Adv Healthc
               reconstruction  of the trachea: A  historical perspective.   Mater, 5(22): 2856–2865.
               World J Clin Cases, 5(4): 128–133.                 https://doi.org/10.1002/adhm.201600435
               https://doi.org/10.12998/wjcc.v5.i4.128         165. Holzl K, Lin S, Tytgat L, et al., 2016, Bioink properties
                                                                  before, during and after 3D bioprinting. Biofabrication, 8(3):
            152. Lei D, Luo B, Guo Y, et al., 2019, 4-Axis printing microfibrous
               tubular scaffold and tracheal cartilage application. Sci China   032002.
               Mater, 62(12): 1910–1920.                          https://doi.org/10.1088/1758-5090/8/3/032002
               https://doi.org/10.1007/s40843-019-9498-5       166. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
            153. Huo Y, Xu Y, Wu X, et al., 2022, Functional trachea   organs. Nat Biotechnol, 32(8): 773–785.
               reconstruction  using  3D-bioprinted  native-like  tissue   https://doi.org/10.1038/nbt.2958
               architecture based on designable tissue-specific bioinks. Adv   167. Chimene D, Kaunas  R, Gaharwar  AK, 2020, Hydrogel
               Sci (Weinh), 9(29): e2202181.                      bioink reinforcement for additive manufacturing: A focused
            154. Benjamin EJ, Blaha MJ, Chiuve SE, et al., 2017, Heart   review of emerging strategies. Adv Mater, 32(1): e1902026.
               disease and stroke statistics—2017 update: A report from   https://doi.org/10.1002/adma.201902026
               the American Heart Association. Circulation, 135(10):
                                                               168. Rana D, Ramasamy K, Leena M, et al., 2016, Surface
               https://doi.org/10.1161/cir.0000000000000485
                                                                  functionalization of nanobiomaterials for application in
            155. Noor N, Shapira A, Edri R, et al., 2019, 3D printing of   stem  cell  culture, tissue  engineering,  and  regenerative
               personalized thick and perfusable cardiac patches and   medicine. Biotechnol Prog, 32(3): 554–567.
               hearts. Adv Sci, 6(11): 1900344.
                                                                  https://doi.org/10.1002/btpr.2262
               https://doi.org/10.1002/advs.201900344
            156. Shapira A, Noor N, Asulin M, et al., 2018, Stabilization
               strategies in  extrusion-based 3D  bioprinting for  tissue
               engineering. Appl Phys Rev, 5(4): 041112.
               https://doi.org/10.1063/1.5055659
            Volume 9 Issue 5 (2023)                        238                         https://doi.org/10.18063/ijb.759
   241   242   243   244   245   246   247   248   249   250   251