Page 245 - IJB-9-5
P. 245
International Journal of Bioprinting Hydrogels for 3D bioprinting
121. Ho CM, Mishra A, Lin P T, et al., 2017, 3D printed 133. Sultan S, Mathew AP, 2018, 3D printed scaffolds with
polycaprolactone carbon nanotube composite scaffolds for gradient porosity based on a cellulose nanocrystal hydrogel.
cardiac tissue engineering. Macromol Biosci, 17(4). Nanoscale, 10(9): 4421–4431.
https://doi.org/10.1002/mabi.201600250 https://doi.org/10.1039/c7nr08966j
122. Ergul NM, Unal S, Kartal I, et al., 2019, 3D printing 134. Alcala-Orozco CR, Mutreja I, Cui X, et al., 2020, Design
of chitosan/ poly(vinyl alcohol) hydrogel containing and characterisation of multi-functional strontium-gelatin
synthesized hydroxyapatite scaffolds for hard-tissue nanocomposite bioinks with improved print fidelity and
engineering. Polym Test, 79: 106006. osteogenic capacity. Bioprinting, 18: e00073.
https://doi.org/10.1016/j.polymertesting.2019.106006 https://doi.org/10.1016/j.bprint.2019.e00073
123. Cheng Z, Landish B, Chi Z, et al., 2018, 3D printing hydrogel 135. Annabi N, Shin SR, Tamayol A, et al., 2016, Highly elastic
with graphene oxide is functional in cartilage protection by and conductive human-based protein hybrid hydrogels. Adv
influencing the signal pathway of Rank/Rankl/OPG. Mater Mater, 28(1): 40–49: 40–49.
Sci Eng C, 82: 244–252.
https://doi.org/10.1002/adma.201503255
https://doi.org/10.1016/j.msec.2017.08.069
136. Hribar KC, Meggs K, Liu J, et al., 2015, Three-dimensional
124. Navaei A, Saini H, Christenson W, et al., 2016, Gold
nanorod-incorporated gelatin-based conductive hydrogels direct cell patterning in collagen hydrogels with near-
for engineering cardiac tissue constructs. Acta Biomater, 41: infrared femtosecond laser. Sci Rep, 5: 17203.
133–146. https://doi.org/10.1038/srep17203
https://doi.org/10.1016/j.actbio.2016.05.027 137. Vijayavenkataraman S, Lu WF, Fuh JY, 2016, 3D bioprinting
125. Khalili Fard J, Jafari S, Eghbal MA, 2015, A review of of skin: A state-of-the-art review on modelling, materials,
molecular mechanisms involved in toxicity of nanoparticles. and processes. Biofabrication, 8(3): 032001.
Adv Pharm Bull, 5(4): 447–454. https://doi.org/10.1088/1758-5090/8/3/032001
126. Wan B, Wang ZX, Lv QY, et al., 2013, Single-walled carbon 138. Sheikholeslam M, Wright MEE, Jeschke MG, et al., 2018,
nanotubes and graphene oxides induce autophagosome Biomaterials for skin substitutes. Adv Healthc Mater, 7(5).
accumulation and lysosome impairment in primarily
cultured murine peritoneal macrophages. Toxicol Lett, https://doi.org/10.1002/adhm.201700897
221(2): 118–127. 139. Ng WL, Wang S, Yeong WY, et al., 2016, Skin bioprinting:
127. Yuan X, Zhang X, Sun L, et al., 2019, Cellular toxicity and Impending reality or fantasy? Trends Biotechnol, 34(9): 689–699.
immunological effects of carbon-based nanomaterials. Part https://doi.org/10.1016/j.tibtech.2016.04.006
Fibre Toxicol, 16: 1743–8977.
140. Shi Y, Xing TL, Zhang HB, et al., 2018, Tyrosinase-doped
128. Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, et bioink for 3D bioprinting of living skin constructs. Biomed
al., 2020, Recent advances in natural gum-based biomaterials Mater, 13(3): 035008.
for tissue engineering and regenerative medicine: A review.
Polymers (Basel), 12(1): 176. https://doi.org/10.1088/1748-605X/aaa5b6
https://doi.org/10.3390/polym12010176 141. Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of
bio-inspired 3D tissue constructs for skin regeneration.
129. Chen W, Xu Y, Liu Y, et al., 2019, Three-dimensional printed
electrospun fiber-based scaffold for cartilage regeneration. Biomaterials, 258: 120287.
Mater Des, 179: 107886. https://doi.org/10.1016/j.biomaterials.2020.120287
https://doi.org/10.1016/j.matdes.2019.107886 142. Ozbolat IT, 2015, Bioprinting scale-up tissue and organ
130. Dufresne A, 2013, Nanocellulose: A new ageless constructs for transplantation. Trends Biotechnol, 33(7):
bionanomaterial. Mater Today, 16(6): 220–227. 395–400.
https://doi.org/10.1016/j.mattod.2013.06.004 https://doi.org/10.1016/j.tibtech.2015.04.005
131. Piras CC, Fernández-Prieto S, De Borggraeve WM, 2017, 143. Urciuolo A, Poli I, Brandolino L, et al., 2020, Intravital three-
Nanocellulosic materials as bioinks for 3D bioprinting. dimensional bioprinting. Nat Biomed Eng, 4(9): 901–915.
Biomater Sci, 5(10): 1988–1992. https://doi.org/10.1038/s41551-020-0568-z
https://doi.org/10.1039/c7bm00510e 144. Albanna M, Binder KW, Murphy SV, et al., 2019, In situ
132. Leppiniemi J, Lahtinen P, Paajanen A, et al., 2017, 3D bioprinting of autologous skin cells accelerates wound healing of
printable bioactivated nanocellulose-alginate hydrogels. extensive excisional full-thickness wounds. Sci Rep, 9(1): 1856.
ACS Appl Mater Interfaces, 9(26): 21959–21970. https://doi.org/10.1038/s41598-018-38366-w
Volume 9 Issue 5 (2023) 237 https://doi.org/10.18063/ijb.759

