Page 245 - IJB-9-5
P. 245

International Journal of Bioprinting                                         Hydrogels for 3D bioprinting



            121. Ho CM, Mishra A, Lin P T, et al., 2017, 3D printed   133. Sultan S, Mathew AP, 2018, 3D printed scaffolds with
               polycaprolactone carbon nanotube composite scaffolds for   gradient porosity based on a cellulose nanocrystal hydrogel.
               cardiac tissue engineering. Macromol Biosci, 17(4).  Nanoscale, 10(9): 4421–4431.
               https://doi.org/10.1002/mabi.201600250             https://doi.org/10.1039/c7nr08966j
            122. Ergul NM, Unal S, Kartal I, et al., 2019, 3D printing   134. Alcala-Orozco CR, Mutreja I, Cui X, et al., 2020, Design
               of chitosan/ poly(vinyl alcohol) hydrogel containing   and characterisation of multi-functional strontium-gelatin
               synthesized hydroxyapatite scaffolds for hard-tissue   nanocomposite bioinks with improved print fidelity and
               engineering. Polym Test, 79: 106006.               osteogenic capacity. Bioprinting, 18: e00073.
               https://doi.org/10.1016/j.polymertesting.2019.106006  https://doi.org/10.1016/j.bprint.2019.e00073
            123. Cheng Z, Landish B, Chi Z, et al., 2018, 3D printing hydrogel   135. Annabi N, Shin SR, Tamayol A, et al., 2016, Highly elastic
               with graphene oxide is functional in cartilage protection by   and conductive human-based protein hybrid hydrogels. Adv
               influencing the signal pathway of Rank/Rankl/OPG. Mater   Mater, 28(1): 40–49: 40–49.
               Sci Eng C, 82: 244–252.
                                                                  https://doi.org/10.1002/adma.201503255
               https://doi.org/10.1016/j.msec.2017.08.069
                                                               136. Hribar KC, Meggs K, Liu J, et al., 2015, Three-dimensional
            124. Navaei A, Saini H, Christenson W, et al., 2016, Gold
               nanorod-incorporated gelatin-based conductive hydrogels   direct cell patterning in collagen hydrogels with near-
               for engineering cardiac tissue constructs. Acta Biomater, 41:   infrared femtosecond laser. Sci Rep, 5: 17203.
               133–146.                                           https://doi.org/10.1038/srep17203
               https://doi.org/10.1016/j.actbio.2016.05.027    137. Vijayavenkataraman S, Lu WF, Fuh JY, 2016, 3D bioprinting
            125. Khalili Fard J, Jafari S, Eghbal MA, 2015, A review of   of skin: A state-of-the-art review on modelling, materials,
               molecular mechanisms involved in toxicity of nanoparticles.   and processes. Biofabrication, 8(3): 032001.
               Adv Pharm Bull, 5(4): 447–454.                     https://doi.org/10.1088/1758-5090/8/3/032001
            126. Wan B, Wang ZX, Lv QY, et al., 2013, Single-walled carbon   138. Sheikholeslam M, Wright MEE, Jeschke MG, et al., 2018,
               nanotubes and graphene oxides induce autophagosome   Biomaterials for skin substitutes. Adv Healthc Mater, 7(5).
               accumulation and lysosome impairment in primarily
               cultured  murine  peritoneal  macrophages.  Toxicol Lett,   https://doi.org/10.1002/adhm.201700897
               221(2): 118–127.                                139.  Ng WL, Wang S, Yeong WY, et al., 2016, Skin bioprinting:
            127. Yuan X, Zhang X, Sun L, et al., 2019, Cellular toxicity and   Impending reality or fantasy? Trends Biotechnol, 34(9): 689–699.
               immunological effects of carbon-based nanomaterials. Part   https://doi.org/10.1016/j.tibtech.2016.04.006
               Fibre Toxicol, 16: 1743–8977.
                                                               140. Shi Y, Xing TL, Zhang HB, et al., 2018, Tyrosinase-doped
            128. Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, et   bioink for 3D bioprinting of living skin constructs. Biomed
               al., 2020, Recent advances in natural gum-based biomaterials   Mater, 13(3): 035008.
               for tissue engineering and regenerative medicine: A review.
               Polymers (Basel), 12(1): 176.                      https://doi.org/10.1088/1748-605X/aaa5b6
               https://doi.org/10.3390/polym12010176           141. Zhou F, Hong Y, Liang R,  et al., 2020, Rapid printing of
                                                                  bio-inspired 3D tissue constructs for skin regeneration.
            129. Chen W, Xu Y, Liu Y, et al., 2019, Three-dimensional printed
               electrospun fiber-based scaffold for cartilage regeneration.   Biomaterials, 258: 120287.
               Mater Des, 179: 107886.                            https://doi.org/10.1016/j.biomaterials.2020.120287
               https://doi.org/10.1016/j.matdes.2019.107886    142. Ozbolat IT, 2015, Bioprinting scale-up tissue and organ
            130. Dufresne A, 2013, Nanocellulose: A new ageless   constructs for transplantation.  Trends  Biotechnol, 33(7):
               bionanomaterial. Mater Today, 16(6): 220–227.      395–400.
               https://doi.org/10.1016/j.mattod.2013.06.004       https://doi.org/10.1016/j.tibtech.2015.04.005
            131. Piras CC, Fernández-Prieto S, De Borggraeve WM, 2017,   143. Urciuolo A, Poli I, Brandolino L, et al., 2020, Intravital three-
               Nanocellulosic materials as bioinks for 3D bioprinting.   dimensional bioprinting. Nat Biomed Eng, 4(9): 901–915.
               Biomater Sci, 5(10): 1988–1992.                    https://doi.org/10.1038/s41551-020-0568-z
               https://doi.org/10.1039/c7bm00510e              144.  Albanna M, Binder KW, Murphy SV, et al., 2019, In situ
            132. Leppiniemi J, Lahtinen P, Paajanen A,  et al., 2017, 3D   bioprinting of autologous skin cells accelerates wound healing of
               printable bioactivated nanocellulose-alginate hydrogels.   extensive excisional full-thickness wounds. Sci Rep, 9(1): 1856.
               ACS Appl Mater Interfaces, 9(26): 21959–21970.     https://doi.org/10.1038/s41598-018-38366-w




            Volume 9 Issue 5 (2023)                        237                         https://doi.org/10.18063/ijb.759
   240   241   242   243   244   245   246   247   248   249   250