Page 243 - IJB-9-5
P. 243

International Journal of Bioprinting                                         Hydrogels for 3D bioprinting



               3D patient-derived brain tumor organoids.  Biomed Mater,    87.  Bertassoni LE, Cardoso JC, Manoharan V, et  al., 2014,
               18(1).                                             Direct-write bioprinting of cell-laden methacrylated gelatin
            76.  Zhou Q, Yang K, He J, et al., 2019, A novel 3D-printable   hydrogels. Biofabrication, 6(2): 024105.
               hydrogel with high mechanical strength and shape memory   https://doi.org/10.1088/1758-5082/6/2/024105
               properties. J Mater Chem C, 7(47): 14913–14922.
                                                               88.  Zhang H, Cong Y, Osi AR, et al., 2020, Direct 3D printed
               https://doi.org/10.1039/c9tc04945b                 biomimetic scaffolds based on hydrogel microparticles
            77.  Chen  H,  Cheng  R,  Zhao X, et al.,  2019,  An  injectable   for  cell  spheroid  growth.  Adv Funct Mater,  30(13):
               self-healing coordinative hydrogel with antibacterial and   1910573.
               angiogenic properties for diabetic skin wound repair. NPG   https://doi.org/10.1002/adfm.201910573
               Asia Mater, 11(1).
                                                               89.  Sahranavard M, Zamanian A, Ghorbani F, et al., 2020,
               https://doi.org/10.1038/s41427-018-0103-9          A critical review on three dimensional-printed chitosan
            78.  Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D   hydrogels for development of tissue engineering.
               bioprinting of perfusable vascular constructs using a blend   Bioprinting, 17: e00063.
               bioink. Biomaterials, 106: 66.                     https://doi.org/10.1016/j.bprint.2019.e00063
               https://doi.org/10.1016/j.biomaterials.2016.07.038  90.  Intini C, Elviri L, Cabral J, et al., 2018, 3D-printed chitosan-
            79.  Kolesky  DB,  Truby  RL,  Gladman  AS, et al.,  2014,  3D   based scaffolds: An in vitro study of human skin cell growth
               bioprinting of vascularized, heterogeneous cell-laden tissue   and an in-vivo wound healing evaluation in experimental
               constructs. Adv Mater, 26(19): 3124–3130.          diabetes in rats. Carbohydr Polym, 199: 593–602.
               https://doi.org/10.1002/adma.201305506             https://doi.org/10.1016/j.carbpol.2018.07.057
            80.  Muller M, Becher J, Schnabelrauch M, et al., 2015,   91.  Chang  HK,  Yang DH,  Ha  MY, et al.,  2022, 3D  printing
               Nanostructured  pluronic  hydrogels  as  bioinks  for  3D   of cell-laden visible light curable glycol chitosan bioink
               bioprinting. Biofabrication, 7(3): 035006.         for bone tissue engineering.  Carbohydr  Polym, 287:
               https://doi.org/10.1088/1758-5090/7/3/035006       1879–1344.
            81.  Yu YH, Lee D, Hsu YH, et al., 2020, A three-dimensional   92.  Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely printable
               printed polycaprolactone scaffold combined with co-axially   and  biocompatible  silk  fibroin  bioink  for  digital  light
               electrospun vancomycin/ceftazidime/bone  morphological   processing 3D printing. Nat Commun, 9(1).
               protein-2 sheath-core nanofibers for the repair of segmental   https://doi.org/10.1038/s41467-018-03759-y
               bone defects during the masquelet procedure. Int J Nanomed,
               15: 913–925.                                    93.  Carrow JK, Gaharwar AK, 2015, Bioinspired polymeric
                                                                  nanocomposites for regenerative medicine. Macromol Chem
               https://doi.org/10.2147/ijn.S238478                Phys, 216(3): 248–264.
            82.  Zhang YS, Davoudi F, Walch P, et al., 2016, Bioprinted   https://doi.org/10.1002/macp.201400427
               thrombosis-on-a-chip. Lab Chip, 16(21): 4097–4105.
                                                               94.  Zhu K, Shin SR, Van Kempen T, et al., 2017, Gold
               https://doi.org/10.1039/c6lc00380j                 nanocomposite bioink for printing 3D cardiac constructs.
            83.  Xu Y, Hu Y, Liu C, et al., 2018, A novel strategy for creating   Adv Funct Mater, 27(12): 1605352.
               tissue-engineered biomimetic blood vessels using 3D   https://doi.org/10.1002/adfm.201605352
               bioprinting technology. Materials, 11(9): 1581.
                                                               95.  Navaei A, Saini H, Christenson W, et al., 2016, Gold nanorod-
               https://doi.org/10.3390/ma11091581
                                                                  incorporated gelatin-based conductive hydrogels for engineering
            84.  Karyappa  RA-O,  Goh  WH,  Hashimoto  MA-O,  2022,   cardiac tissue constructs. Acta Biomater, 41: 133–146.
               Embedded core-shell 3D printing (eCS3DP) with low-  https://doi.org/10.1016/j.actbio.2016.05.027
               viscosity polysiloxanes. ACS Appl Mater Interfaces, 14(36):
               41520–41530.                                    96.  Gao L, Zhou Y, Peng J, et al., 2019, A novel dual-adhesive
                                                                  and bioactive hydrogel activated by bioglass for wound
            85.  Liu W, Heinrich MA, Zhou Y, et al., 2017, Extrusion
               bioprinting of shear-thinning gelatin methacryloyl bioinks.   healing. NPG Asia Mater, 11(1).
               Adv Healthc Mater, 6(12).                          https://doi.org/10.1038/s41427-019-0168-0
               https://doi.org/10.1002/adhm.201601451          97.  Gonçalves EM, Oliveira FJ, Silva RF,  et  al., 2016, Three-
                                                                  dimensional printed PCL-hydroxyapatite scaffolds filled
            86.  Zhao X, Lang Q, Yildirimer L, et al., 2016, Photocrosslinkable
               gelatin hydrogel for epidermal tissue engineering.  Adv   with CNTs for bone cell growth stimulation. J Biomed Mater
                                                                  Res Part B Appl Biomater, 104(6): 1210–1219.
               Healthc Mater, 5(1): 108–118.
                                                                  https://doi.org/10.1002/jbm.b.33432
               https://doi.org/10.1002/adhm.201500005

            Volume 9 Issue 5 (2023)                        235                         https://doi.org/10.18063/ijb.759
   238   239   240   241   242   243   244   245   246   247   248